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ABSTRACT 

Let T be a homeomorphism of a metrizable compact X,  the sequence ck/k 

tends to 0 and ck tends to infinity. We'll s tudy the limit behaviour of the 

distributions of the sums (1/ck) k-1 T i ~-~i=0 F o where F is from a space of 

continuous functions the central limit problem and the speed of conver- 

gence in the ergodic theorem. 

The main at tention is given to the case where X is the unit circle and T 

is an irrational rotation; in this case we consider the spaces of absolutely 

continuous, Lipschitz, and k-times differentiable functions F.  

1. I n t r o d u c t i o n  

Let (T, f2, .A, A) be a dynamical system given by a measure preserving transfor- 

mation T: f~ --~ ft of the probability space (f2, ,4, A). The limit behavior of the 

sums Sn( f )  n-1 T i = ~ i=0  f o is a topic which is intensively studied in ergodic 

theory and probability theory. The Birkhoff ergodic theorem says that  if f is 

integrable, (1 /n )S~( f )  converge pointwise a.e. Burton and Denker proved that  
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for each ergodic and aperiodic dynamical system there exists f such that  for the 

process ( f  o T i) the central limit theorem holds ([2], see also [4]). Lacey proved 

a convergence to self-similar processes ([14]). On the other hand, Voln~ [20] 

proved that  for a generic set of functions from L~, 1 _ p < c~ and any sequence 

(cn),~ such that  lima cn = oc and lim~ c,~/n = 0, the distributions of (1/cn)Sn(f) 
converge (along subsequences) to all probability laws (the case of p = c~ can be 

proved in the same way, using the fact that  measurable coboundaries are dense 

in L ~ ,  cf. [9]). This shows that  in the Birkhoff theorem, an arbitrarily slow rate 

of convergence is not only possible but also generic (more results on the speed of 

convergence in the ergodic theorem are given in the monograph [12]). 

Here we shall first consider the situation when T is a homeomorphism of a 

topological space and f is continuous. When considering the space of continuous 

functions go(X) on a metrizable compact space X, with null integral for each T- 

invariant Borel probability measure, we get the same results as for the L~ spaces 

on a general probability space with an aperiodic measure preserving transforma- 

tion (Theorem 1). Further results concern the spaces of absolutely continuous, 

Lipschitz, and continuously differentiable functions for an irrational rotation of 

the unit circle (our results thus treat  one of the simplest differentiable dynam- 

ical systems). The Koksma-Denjoy Theorem shows that  for bounded variation 

functions, the rate of convergence in the Ergodic Theorem cannot be arbitrarily 

slow. For example, if the rotation is given by the golden number, the suprema 

of the partial sums of any zero mean absolutely continuous function grow with 

a rate slower than the logarithmic one. As we shall see, the results depend on 

Diophantine properties of the rotation. 

In the case of rotations x ~-~ x + a  mod 1 where the continued fraction expansion 

of a has unbounded partial quotients, we shall show results similar to those which 

hold in L p spaces or in the space of continuous functions; our problem can be 

considered as satisfactorily answered in this case. As a corollary we get a (known) 

result giving conditions for the existence and genericity of k-times continuously 

differentiable zero mean functions which are not coboundaries. We shall also 

prove the existence and genericity of ergodic cocycles for a cylindric flow. 

The results concerning the bounded partial quotients are much less complete. 

We shall prove that  for a generic set of absolutely continuous zero mean functions 

F,  there exists a weak convergence to the standard normal law along subsequences 

of (1/cn)Sn(F), with lirra cn = c~. The partial sums Sn(F) are thus not stochas- 
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tically bounded, hence F are not coboundaries (see [15]). We shall give bounds 

for the suprema of S~ (F). 

The paper  is based on research done during a visit of the first author in Praha  

and several visits of the second author in Marseille. 

2. C o n t i n u o u s  f u n c t i o n s  on  a c o m p a c t  m e t r i c  s p a c e  

Let X be a compact metric space, T: X ~ X a homeomorphism of X onto 

itself and let A be a T-invariant Borel probability measure. We suppose that  

the measure A is aperiodic (see [5]). C(X) denotes the space of all real valued 

continuous functions on X and C0(X) is the space of all f E C(X) with f f dR = 0 

for any T-invariant probability measure A. By [I.[[o~ we denote the supremum 

norm in C(X). 

THEOREM 1: Let the measure A be aperiodic. Let (c,~)n be an unbounded 

increasing sequence of positive integers with c~/n converging to O. Then there 

exists a dense G~ set of functions f E Co(X) such that for each probability 

measure ~ on R there exists a sequence of positive integers nk --~ c~ for which 

the sequence of distributions of (1/cnk ~ ) ~ j = l  f o T j weakly converges to v. 

As a corollary we get a result saying that  for continuous functions, the 

convergence in the Birkhoff theorem may be arbitrarily slow (cf. [12]). 

COROLLARY: Let (c~)~ be as in Theorem 1. Then there exists a dense G~ set 

of functions f E Co(X) for which there exist subsequences (c~ k)k such that k ~-+ 

E j : I  f o T j diverges to infinity in the measure. 

Let U: C(X) -~ C(X) be the operator defined by Uf  = f o T, and let I be the 

identity operator. 

For proving the Theorem we shall need to show that  in C0(X), the set of 

coboundaries is dense. Similarly as in the L v spaces, 0 < p <_ c~, this can be 

easily proved using a duality argument. The results should be well known to the 

specialists, e.g. the next lemma can be found as Proposition 9.12 in [8] (Professor 

Lemaficzyk kindly informed the authors about this reference.) 

LEMMA 1: (I -- U)C(X) is a dense subset of Co(X). 

Proof: Let us suppose that  ( I - U ) C ( X )  is not dense in Co(X). Then there exists 

a finite real-valued measure A on X and f E C0(X) such that  f f dR r 0 and 
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f g dA -- 0 for all g E ( I -  U)C(X).  For h e C(X) we thus have f ( h -  Uh) dA = O, 

hence A is a T-invariant measure. Let {A, B} be a measurable parti t ion of X 

representing the Hahn decomposition of A, i.e. A(E) _> 0 for every measurable set 

E C A and A(F) _< 0 for every measurable set F C B. Let C = A \ T -1A .  Then 

A(C) >_ 0 while T C  N A = O, hence T C  C B, hence A(TC) < O. From this and 

A(C) = A(TC) follows A(C) = 0, therefore A is an invariant set and B is thus 

invariant as well. Considering the multiples of the measures A+(E) = A(E N A) 

and A - ( E )  = A(E ;7 B) we derive that  there exists an invariant probability 

measure Ao with f f d A o  r 0, which contradicts the supposition f E Co(X). 

I 

Proof of Theorem 1: The proof can be done in a similar way as the proof of 

Theorem 1 in [20]; Lemma 1 plays the same role as the Lemma in [20]. Notice 

that  the density of (I  - U)C(X) in Co(X) is sufficient, in fact we do not need the 

density of ( I  - U)Co(X). 

Let F be the set of all probability measures u on R supported by finite sets 

of rational numbers, with rational values, and f x du(x) = 0. One can easily see 

that  F is a countable set, dense in the space of all probability distributions on N 

(equipped with the topology of weak convergence). 

The set of the weak limit points of the distributions of (1/cn)S~(f )  is closed 

for each f E C0(X), hence for the proof of Theorem 1 it suffices to prove that  for 

an arbitrari ly chosen u E F there exists a dense G~ set of f E Co(X) for which the 

distributions of (1/cn~)Sn~ ( f )  weakly converge to u for some sequence of positive 

integers nk --~ c~. 

Let u E F and let n be a positive integer. There exists a positive integer m and 

rational numbers X l , . . . , x r ,  r < m, such that  v({xj}) = m ( j ) / m ,  1 < j <_ r, 

where m ( j )  are positive integers such that  ~-~.j=l m( j )  -- m and ~-~j=l x j m O  ) = 

0. The measure A is regular, so that  for every measurable set A and e > 0 there 

exist an open set A C A ~ and a closed set A" C A with A(A~\ A") < e. From 

this we can easily derive that  in the Rokhlin Lemma, the base set can be taken 

open. For any ~ > 0 there thus exists a Rokhlin tower V, T - I V , . . . ,  T - n ' m + l V  

where V is an open set, and a continuous function ~, 0 _< q3 < 1, which is zero on 

A " v ' ~ m ' n - 1  ~ T i 1) > 1 6 (i.e. the sets V, . . , T - n ' m + l V  X \ V such that  [2-,i=0 ~ o = - 

exhaust most  of X and ~ is close to the indicator function of V). 
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Define 

and  

W = 

m-i 

U T-j"~V 
j=O 

(:) 
m(1)--i m(1)+...+ra(r)-- i 

~9~Xl E ~~ E ~~ 
j=0 j=m(1)+...+m(r--1) 

Hence, W, T-1W,..., T-(n-1)W is a Rokhl in  tower,  ~ is zero on X \ W ,  and 
n--1 Ti the  d i s t r i bu t ion  of ~ i = 0  ~ o is close to ~,. For any invar iant  measure  ~ we 

have 
T 

j=l 

hence ~ C Co(X). 
Let  e > 0 be given. As limk__.~(ck/k) = O, we can choose k big enough so t h a t  

(ck/k) m a x : < j < ~  Ixjl < e. We can also suppose  t ha t  n is so big t h a t  k .  ,~(W) < e. 

Define Aw(.)  = A(. I W ) ,  the  condi t iona l  p robab i l i ty  given W.  

For  5 sufficiently smal l  we get  5 < e and 

f exp(itg(x))dAw(X) - f exp(itx)d,(x) < e  for t e ( - k ,  k). 
J J 

Define 
n-k Ck f= "-ff E g~o TJ ; 
j=0 

we thus  have I l f l ]~  < e. For  s --  k - 1 . . . .  , n  - k we have 

/T_sweXp ( ic~Sk(f)) dA = /T_sweXp(it'~~ TS)dA = A(W) / exp(it~) d)~W" 

Therefore,  

s=k~l /T_sw eXp ( ic~ Sk(f) ) dA-(n + 2-2k)A(W) / exp(itx) d~(x) <_e 

hence 
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There thus exists a sequence of positive real numbers (r/k)k, converging to 0, and 

functions fk E Co(X) such that  

it S - e itz du(x) < Eexp(-~kk(fk) ) / ~?a 

lira IIAII~ -- 0. 
k'--'* oo 

for t E [ -k ,  k], 

For each k = 1, 2 , . . .  there exists an open neighborhood Lt(fk) of fk such that  

for f G/-/(fk) 

Eexp(ic~Sk(f))-Eexp(ic~sk(fk))l < k, tE[-k,k], 

i~ 
1 E e x p ( ~ & ( f ) ) -  f eit~du(x) < ~ + ~ k ,  tE[-k,k]. 

Let bk, k = 1 ,2 , . . .  be positive real numbers such that  limkbk = c~ and 

limk(bk/ck) = 0. For each k define 

u~ = {g e Co(X): Ilgll~ ~ bk} 

and 

Hk = [N(fn) + (U - / )b /n ] ,  H = A Hk. 
n = k  k = l  

U The sets Hk are open and by Lemma 1, Un=k( - I)Un is dense in Co(X), so 

that  H is a dense G$ set. Let f E H. For any positive integer k we have f E Hk, 

thus for all n > k there exists a decomposition f = g~+g" - Ug" with g'  E L/(fn), 

g" E L/n. Hence 

Eexp(itS~(g')l-/e~t~dv(x)\c,~ / < n l+~?n fortE[-n,n] 

and 

i s n ( g , , -  u d ' )  = 1 l i d ' -  u~d'll  < 2b~ 
Cn oo Cn Cn 

Therefore there exists a strictly increasing sequence of integers nk such that  the 

distributions of (1/cnk)Sn~ (f) weakly converge to u. II 
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3. R o t a t i o n s  on  t h e  circle  

3.1 ABSOLUTELY CONTINUOUS AND SMOOTH FUNCTIONS ON THE CIRCLE. Let 

T be the unit circle represented as the unit interval [0, 1) with the Borel a-algebra 

and the Lebesgue probability measure A. For an irrational number a C [0, 1), 

T = T~ denotes the rotation x H x + a (mod 1) on T. The functions on T will 

be often called cocycles. A cocycle F of the form F = G - G o T is called a 

coboundary, G is its transfer function. 

We consider the following spaces: 

- ` 4 o  is the space of all absolutely continuous cocycles F for which 

r ( t )  = o, 

- s is the space of all Lipschitz functions from `40, 

- C~ is the space of all cocycles with continuous k-th derivative and with zero 

integral (1 ~ k < ~ ) .  

An absolutely continuous cocycle F has a derivative f = F' a.e.; for F E `40 

we have f E LI(T) and for F C s C `40 we have f C L~(T) .  By the definition 

of f, fd f(x) dx --- 0 and we have 

~0 t ~01~0 u (2) F(t)---- f(x) d x -  f(z) dxdu, O<_t<l.  

Therefore, F(O) -= - f~ ]o f(x) dxdt. Formula (2) thus defines a bijection between 

Ao and L~, and between s and L ~ .  

On the spaces .40 and/2o we introduce respectively the norms 

IIF[IAo = [F'(t)] dt and IlFllco = esssup IF'(t)[. tC'l" 
When there is no danger of confusion the norms will be used without subscripts. 

.4o and 120 with the norms introduced above are Banach spaces and the relation 

(2) gives their isomorphisms onto L~ and L ~  respectively. 

Let F C Co k, 1 < k < oc. Then the k-th derivative F (k) is a continuous function 

on Co(T) and (2) shows that  we can (by iterations) get F back from F (k). The 

space C0 k is thus isomorphic to C0(T) and the metric inherited from C(T) furnishes 

Co k with the standard topology of Co k. On C~ we have the coarsest topology with 

respect to which all the functionals from all Co k, 1 _< k < ec, are continuous. 

In the Proof  of Theorem 1 we took advantage of the fact that  the coboundaries 

are dense in C0. In the next two lemmas we prove that  for .4o, s and Cg, 

1 <_ p _< oc, this holds, too. 
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LEMMA 2: Let s be any of the spaces Ao, s or Cko, 1 < k < co. I f  F E s and F'  

is a coboundary, and F '  = G t - G '  o T where G E $, then F is also a coboundary 

a n d F = G - G o T .  

Proof." Let F E s Following (2) we have 

//' /o'/o F(t)  = Ft(x) dx - F'(x)  dxdu. 

Suppose tha t  F '  = f = g - g o T and G(t) = fo g(x)dx. Then 

/o' F(t)  = f (x )  d x -  G(a) = G(t) - G(t + a). I 

LEMMA 3: In the space .40 (resp. C~, 1 < k < co), the set of the coboundaries 

G - G o T ,  

with G absolutely continuous (resp. G E C~), is dense. 

In s the set of coboundaries with G measurable is dense. 

Proof." The set of all coboundaries g - g o T, g E L~, is dense in L~. Their  

images in *4o in the isomorphism between Lo 1 and .40 are thus also dense and 

by Lemma 2 they are coboundaries with transfer functions from .4o. In the 

same way (using Lemma 1) we prove that  the coboundaries with continuously 

differentiable transfer functions are dense in Co 1. Now, Lemma 2 enables one to 

extend the result recursively to all C~, 1 _< p ( co. 

The set of coboundaries F = G - G o T with G E C ~ is dense in every C~, 

I _< p < co, hence it is also dense in C~.  

The set of coboundaries with integrable transfer function is not dense in L ~  

(see [8] or [9]) and similarly, we can easily prove tha t  the coboundaries with 

absolutely continuous transfer functions are not dense in s The proof  of the 

Lemma for s is given in [21] (and is much more complicated than  in the previous 

cases). I 

3.2 THE DENJOY-KOKSMA THEOREM. Let ~ = (xn)n>o be a sequence in T. 

The discrepancy to the origin D~v(~ ) of ~ is by definition the quant i ty  

t I ~ l[o,t) (Xn) O ~ ( f )  = max - 
o<t<: N 

O<n<N 
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For x~ = T n x  = nc~ + x m o d  1, x E [0, 1) -- T, we have D~v(~ ) = o(1), i.e. ~ is 

uniformly d is t r ibuted  mod  1. 

For all maps  f :  T --* ~ of bounded  var ia t ion V ( f )  one has the so-called Den joy -  

K o k s m a  inequali ty 

(3) N f ( t )  d t -  E f ( x n )  <_ V( f )ND*N(~)  
O~_n<N 

(see e.g. [13], Theo rem 5.1, p.143). If  a has bounded  par t ia l  quotients,  there  

exists a constant  c -- c(a)  for which N D *  N < 3 + c log N (see [13, T h e o r e m  3.4] 

where c is given); if a is of type  77 (see the next  pa rag raph  3.3 for the definition), 

then by [13, Theo rem 3.2] for every e > 0, N D *  N = O(N(-1/v)+~).  Therefore,  the 

ra te  of convergence in the Ergodic Theorem cannot  be arbi t rar i ly  slow a l ready 

for the functions with bounded  variation.  

3.3 DIOPHANTINE APPROXIMATION AND DISCREPANCY. In the sequel we shall 

need results on the discrepancy of sequences (na  (mod 1))n. To this a im we 

recall some basic facts on continued fraction expansion. By ]]x]], x e [0, 1), we 

shall denote  min{x,  1 - x}. For x E N let Ix] denote  the integer pa r t  of x and 

{x} = x - [x] the fractional  par t .  

Let  a = [0; a l ,  a 2 , . . . ]  be the continued fract ion expansion of a E [0, 1). The  

eonvergents Pn/qn of x are given by the following recurrent  formulas (see [11]) 

(4) P~+I = an+lp~ + P~-I  and q~+l = a~+lq~ + q~- i  

for n > 1, wi th  P0 = 0, Pl = 1, q0 = 1, ql -- a l .  We recall the following basic 

formulas (see [11]): 

1 1 
- -  < IIq~c~ll_ - - ,  I Iq~ l ] - - - - ]q r~a -Ph i  = (5) 2q~+1 - q~+l 

(6) IIq~-2all = a~ l l q . - l a l l  + IIq~all, 

(7) q~+ l l lq~ l l  + qnl lqn+lal l  = 1. 

We thus have in par t icular  

1 
(8) a~liq,~-~odl _> 4qn-1 

and 

2 
(9) q n - l a ~ l l q ~ - u X l l  k 1 --  - - .  

an 

rain ]1"~11, 
l<lml <q,-,+l 
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Indeed, for an = 1 we have qn = qn-1 + qn-2 < 2qn-1, hence an[[qn-la[[ > 

1/2qn > 1 /4q~-1 .  For as  > 2 we have 

anNq~-la[[  > a~ /2qn  > a n / 2 ( a , q , _ l  + qn-2) > 1/4qn_l.  

This proves (8). The inequality (9) is also a consequence of (5) and (7). In  fact 

qn- la~[[qn- la][  = qn[[q~-la[] - qn-2[[qn-l(~[[ 

= 1 - qn-x[Iqna[[ - qn-2[[qn-la[[  

> 1 - ( q n - 1 / q n + l )  - ( q n - 2 / q n )  

>_ 1 - ( 2 q ~ - l / q ~ )  _> 1 - (2/a~) 

as required. 

We say tha t  a is of type ~ if 

77 = inf{T E ~: there exists c > 0 such tha t  for all q E N, q~]lqal[ >_ c}  

(see [13], L e m m a  3.1, p. 121); if for every c > 0 and T > 0 there exists q E N 

with q~-I]qall < c, we say tha t  a is of type infinity. The next s ta tement  gives 

some useful characterizations of the type. 

L E M M A  4 :  For a n y  irrat ional  n u m b e r  a E [0, 1), the  fo l lowing  are equiva len t :  

(i) a is o f  t y p e  ~, 

(ii) ~ = inf{7 E 1~: 3c  > 0, Vn > 0, an+l < q ~ - l / c } ,  

(iii) ~/= inf{~- E R: 3 c  > 0, Vn > 0, q~+l < q~ /c} .  

P r o o f  Let 7 > 7/and let c > 0 be such tha t  q~[[qa[[ > c for all natural  numbers  

q. Then  for all indices n one has (cf. (4), (5)) 

c <_ q,~llqnall < qnqn+l _ an+l  

Therefore, a~+l < ~-1 
- qn /c .  Reciprocally, assume tha t  for ~- > 1 there exists c > 0 

such tha t  an+l  < c �9 qn r -1  for all n > 0. Then, for all q E N and n such tha t  

q~ < q < q~+l we get successively (cf. (5)) 

1 1 q~- i  1 

q~llq~ll _ > q~]lq,~all - > qn2(an+lqn  + qn--1) -- > 4 an+l -- > -@C" 

Therefore (i) is equivalent to (ii). The proof  of the equivalence between (ii) and 

(iii) is left to  the reader. II 
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3.4 ROKHLIN TOWERS FOR ROTATIONS. Let us suppose tha t  n is odd so tha t  

q,~_la - pn-1 is positive. Then [0, 1) splits into two Rokhlin towers: 

[ { j a } , { ( q ~ _ l + j ) a } ) ,  j = 0 , . . . , q ~ - i  

is the bigger one and 

[{qua},l), [ { ( j + q n ) a } , { j a } ) ,  j = l , . . . , q n _ l - 1  

is the smaller one. 

For n even we get 

[{qr~-la}, 1), [{(qn-1 + j)a}, {ja}) ,  j ---- 1 , . . . , q n  - 1 

as the bigger tower and 

[{ja},  {(j + qn)a}), j = 0 , . . . ,  qn-1 - -  1 

as the smaller one. 

4. Rotat ions  with unbounded  partial quotients  

In this section a will denote an irrational number  in [0, 1) with unbounded par- 

tial quotients. We shall s tudy the weak convergence of distributions of sums 

~SBk(F)  where Bk ~ oc, ck --* oc or ck ---- 1 for all k, F is from one of the 

spaces A0, E0, C~, 1 _< p < co. 

The result, Theorem 2, immediately gives as a corollary a rate of the growth 

of the part ial  sums Sn (F).  The next two theorems show tha t  the rate is in some 

sense the best  possible. As a consequence of all three theorems we get known (cf. 

e.g. [1] or [8]) necessary and sufficient conditions of the existence and genericity 

of ergodic cocycles in C~, 1 _< p < oc. 

Let p be a positive integer. If  l i m s u p n _ ~  q,/q~-I = oc, there exist positive 

integers nk, Bk, ck, for which limk nk = oc and 

Bk/q,~ ---* O, ckqP_l/Bk---* 0, and ck ~ oc, 

(10) or 

Bk/qnk ~ 0, ckqP_l/Bk ~ 0, ck = 1 for all k and {Bka}-~  O. 
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THEOREM 2: Let s be one of the spaces ,40, s Co p, 1 < p _< c~. / f  

(a) (10) holds true for p -- 1 and s equals Ao or s or Co, or 

(b) (10) holds true for p = r and s = C~, 1 <_ r < cx~, or 

(c) (10) holds true for all positive integers p and s = C~, 

then there exists a dense G~ set of F E s such that 

(11) 

1 
the distributions of - -  S B ~  (F) are a dense set 

Ck 

in the space of all probability measures on R. 

Remark: The sequences (nk)k, (Bk)k, (Ck)k, for which the assumptions of 

Theorem 2 are fulfilled, can be found: 

for s = A0, s if a has unbounded partial quotients, 

for $ -- C~ if the type of a is greater than p, 

for s = C~ if a is of type infinity. 

Taking in (10) the sequence of ck constant has been motivated by the following 

application: For a real cocycle F on the circle we define the skew product TF; 

i.e. the transformation 

TF(x, y) = (Tx, y + F(x)) 

on the cylinder T • R preserving the product measure. If the transformation TF 

is ergodic, we usually say that  the cocycle is ergodic. 

If  a is as in the Remark, the assumptions of Theorem 2 are fulfilled with ck -- 1 

for all k, hence for a dense G~ subset of F E C the subsequences of Ssk (F) 

converge in probability to all constants. Hence, the Essential Value Condition 

which is sufficient for ergodicity of F (see [19]) is fulfilled, namely: 

For every set B of positive measure, a E ~ and  e > 0, there exists n such that  

A ( B A T - n B N { a - e < S ~ ( F ) < a + r  > 0 .  

As a corollary to Theorem 2 we thus get 

THEOREM 3: Under the same assumptions as in Theorem 2, there exists a dense 

G~ set of ergodic cocycles F E s 

The result has been known for smooth functions, for absolutely continuous 

ones it seems to be new. Theorem 3 (as well as the corresponding version of 
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T h e o r e m  2 using Ck =-- 1) was found during the second au thor ' s  s tay  in Torufi 

thanks  to Professor  Mariu.sz Lemaficzyk. 

P r o o f  o f  T h e o r e m  2: Let us first suppose tha t  E = C~, 1 _< p < oo. Similarly 

as in the proof  of Theo rem 1, F denotes a countable and dense set of probabil-  

ity measures  v on • suppor ted  by finite sets of (now, not necessarily rat ional)  

numbers  and f x d r ( x )  = O. 

We suppose tha t  v E F is fixed; similarly as in the proof  of Theo rem 1 it suffices 

to show tha t  (11) holds for a dense G~ set of F E E. From now on, functions on 

the circle will be unders tood  as 1-periodic functions on the real line. 

Let  H be a s tep function on [0, 1) wi th  A o H -1 = u; H is constant  on the 

intervals (x~, x i+ l ) ,  0 = Xo < Xl < . . .  < Xm = 1. Let 

0 < ~ < min  ( X i + l  - -  Xi)/3, 
0 < i < m - - 1  

x~ = xi  + 5, x~' = x i+l  - 5, 0 < i < m -  1. 

We shall define a function H1 E $ which equals H on the intervals (x~, x~'), 

[HI[ ~ IH] and H~J)(o) -- 0 = H~J)(1), 0 <_ j _< p (H~ ~ = H1, p is f rom the 

definition of $).  In  fact, there exists a function h E C ~ which is of constant  

sign on the intervals (xi, x~), and on (x~', x i+l )  (the sign of 0 is + by definition), 
! If equals zero on (xi, xi ), 

h d A  = - h d A  = H 
i , Ix "  

for i = 0 , . . . ,  m - 1 and finally 

h (k) (O)=h(k) (1 )  

for all k > 0. 

For any posit ive integer p, the function 

Jo' H i ( t )  = h(z )  dz  

fulfills our  needs. Moreover,  for a given p put  hi = h (p- l )  for short;  then  we still 

have 

J0'/?' J? H i ( t )  . . . .  h i ( x )  d x d x l . . ,  dxp-1 .  
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Choosing 5 sufficiently small, we can have H1 = H on [0, 1) up to a set of 

arbi trar i ly small (positive) measure. 

The  interval [0, 1) splits into two Rokhlin towers as shown in Section 3.4. For 

simplicity (and without  loss of generality) we suppose tha t  n = nk is odd and we 

define new Rokhlin towers Jo,..., Jq,~-l-1 by 

an--1 

J0 = [O,a,,llq,-lO~ll)( = U TJq"-'[~ , 
j=O 

Ji = T~Jo for i = 1 , . . . , q n _ l  - 1. 

The  intervals Ji are mutual ly disjoint and by (9), 

q,~_:-I 2 

~( U &) = q , , - l a , , l l q , , - , a l l  > 1 - - - .  
i=0 an 

Let us denote  n = nk when this causes no confusion. Define 

h2(x)=(an[lqlla]l)phl ( X ) a ~ l J q : - l - l I  ' x e Jo, 

{ ~h2(T-ix) f o r x C  J/, i = O , . . . , q n _ l - 1  

q n - 1  --1 
f ( x ) =  0 for x e [ 0 , 1 ) \  U Ji, 

i=0 

F(,) f ' p - '  fo "!gl " ' o  , . . . .  y(x) dxdxl dxp-1 
JO JO 

We thus have 

F(p) = f ,  

IIfN~---- ck ]lhlll~ 
Bk (anllqn-lall) p 

C k o p ~ P  

t e  [0, 1). 

c%X) -1(o.,,q:1o,,) 
-~k F(x) = Bk F(T-ix) 

Ck 

Bk F(x) = 0 
Ck 

on J0, 

on Ji, i - -  1, . . . ,q,~_1 - 1, and 

q~--I 

on [ 0 , 1 ) \  U Ji. 
i=0 

(as by (5) and (4), anllqn_lo~ll > an/2qn > 1/2qn-1).  By the assumption (10) 

we have limk ckqP~_l/Bk = O, hence for every c > 0 we can find k big enough so 

tha t  IIFllc,p = II]11~ < e. A straightforward computa t ion  gives 
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Denote bk = [Bk/qn-1]. By the definition, the functions f o T ~ where e = 

- i - j q , ~ - l ,  0 < i _< qn-1 - 1, 0 < j < bk - 1, have the same values on the 

intervals 

T r a o~ x I iJ ( nllqn-1 II 8,anIIqn-lallxs), 0 <_ r < q n - l - 1 ,  0 < s < m - l ,  except 

on intervals at  bo th  extremities of lengths at most  bkllq,~_lall = (bk/an)A(Jo); 

moreover limk(bk/an,) ---- 0. Therefore, for any e > 0 we can choose 5 sufficiently 

small and k sufficiently large such tha t  BkF = Ssk (F) with probabil i ty bigger 

than  1 - e. 

For each of the intervals Jj, j = 0 , . . . ,  qn-1 - 1, 

L 1o, /o ei tB~f(z) /Ckdx = eitBkF(x)/C~dx = an][qn_lal[ eitH'(X)dx; 
JO 

from this and from 1 > qn-la=[[qn-la]] _> 1 - (2/a~) (cf. (5), (4), (9)) we get 

/01 foe 
---- e itB~F(x)/c~ dx - (1 - q~-lanllqn-lal[) .~1 e itHl(x) dx 

~[01) \ Uq"o 1-1 j j  j ~  

4 

an 

For any c > 0, we can thus find F E s and a positive integer k(e) such tha t  

IIFIIc,p < e and 

~ o l e X p ( i t H 1 )  dA - ~ o l e x p ( i t S B k  ( F ) / c k )  dA ( e 

for all t e R and k >_ k(e). The function H1 can be found equal to H on [0, 1) up 

to a set of arbitrari ly small (positive) measure, hence there exist F and a new 

k(e) such tha t  

exp(itH) d A -  exp(itSB~ ( f ) /ck)  < e for t E N and k >_ k(e). 

There  thus exists a sequence Fk E Cg such tha t  the norms of Fk in C p converge 

to zero and the distributions of (1/ck)SB~ (Fk) weakly converge to v. From this 

and the density of the set of coboundaries in C~ we can derive (11) using the 

same arguments  as in the proof  of Theorem 1. 
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The proofs for g = .40 and g = ~;o follow from IIFkIIA ~ IlFkll~ ~ IlFkIlcl. 

I t  remains to prove the Theorem for g = C~.  

By the previous construct ion there exists a sequence of Fk E C~,  k E K,  where 

K is an infinite set of positive integers, the distributions of (1/ck)SBk (Fk) weakly 

converge to u, and the sum ~ k e K  IIFdlc,  converges for every 1 _< p < c~. By 

Lemma 3 we can replace each Fk by a coboundary  Gk - Gk o T with Gk E C ~ .  

Because IIBk~ll --* 0 as k ~ oc (recall tha t  Ilxll denotes the distance of x f rom 

the set of integers), we can (replacing K by a suitable infinite subset) guarantee 

tha t  (1 /ck )~ j<k , j eKSB~(Fj )  --* 0 in the measure as K 9 k ~ ~ .  From 

the decay of the norms of Fk it follows tha t  for a suitable infinite subset of 

F K we also have ( 1 / c k ) ~ j > k , j c g  SB~ ( j )  --* 0 in the measure. Hence, for F = 

~ k e K  Fk E g ~  the distributions of (1/ck)SBk (F) weakly converge to u. Because 

the coboundaries  are dense in g ~ ,  we can derive (11) using the arguments  f rom 

the proof  of  Theorem 1 once again. | 

THEOREM 4: Let F E C p. Then there exist positive numbers  C, B1, B2 , . . .  such 

that oo 
Z B? <_ 
i=1 

and for any  positive integer q, 

(12) 

and 
(13) 

f S~(F)(x) dx C 2 <_ 

where qn-1 _< q _< qn. 

/ o 
ISq(F)I_ o {Sn-~-- 

\ qn-1 
B qn--1 ..~ B1 ~}) + ~-iT+ . . . .  

~n--2 

( ( ) 2  [qn_l~2 (ql)2) 
B2n ~n--1 q- B2n-l ~qn-2,] p AF''''~-B 2 , 

As a corollary to Theorems 2 and 4 we get 

THEOREM 5: Let a be of type ~, p >_ 1 be an integer and F be an arbitrary 

function from C p. 

(1) I f  ~ < p, then there exists a constant C such that 

ISn(F)I < c 

for all n. 
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(2) If  ~ > p, then for every e > 0 there exists an integer Ft such that for every 

q >_ (l, 

(14) [Sq(F)] < ql-~+~ 

and 

(3) there exists a dense G~ set of F E COP such that 

(15)  (ISq(F)l > > 1 - 

for infinitely many positive integers q. 

Remarks: If  we take p = i, Theorem 5 remains valid and the proof works 

for A0 and s as well as for Co I. The upper bound in this case can be also 

found in [13] by combining Theorem 3.2, p. 123, which gives an estimate of the 

discrepancy of ~ -- ({ia})i_>0 where a C (0, 1) is an irrational number of type ~1, 

D~(~) = O(N(-I/~)+~), and the theorem of Koksma-Denjoy which holds for all 

functions of bounded variation. Theorem 5 thus extends the result from [13] to 

k-times continuously differentiable functions and shows that  the bound can be 

approached for a generic set of functions. 

By Theorem 5, for ~/ < p the partial sums Sq(F) are bounded, hence F is a 

coboundary. On the other hand, if ~7 > P, there exists a dense G~ set of F E Co p 

for which the partial  sums Sq(F) are not stochastically bounded, hence F are 

not coboundaries (according to [15]). 

Using Theorem 2 and Theorem 4 more directly, we can get that  

- if l i m s u p n _ ~  qn/q~-1 = r there exists a dense G~ set of F E COP which 

are not coboundaries; 

if lim supn_~ ~ P L 2 - qn/qn-1 < ec, the norms of the sums Sq(F) are for every 

F C Co p bounded, hence F is a coboundary with a transfer function in L 2 

(see, e.g. [17]). 

This reproves the well known result saying that  if the limes inferior of qPllqc~H is 

zero, all functions from Co p are coboundaries, while in the other case there exists 

a G~ set of F E C p which are not coboundaries (cf., e.g. [1]). From Theorem 3 it 

follows that  instead of "are not coboundaries" we can say "are ergodic". Using 

methods from the proof of Theorem 7, a function F E COP can be found, for which 

[Sq (F)] are not bounded while lira s u p ~ _ ~  qn/qP_l is positive and bounded. By 

Theorem 4, F is a coboundary with an unbounded transfer function. 
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Proof of Theorem 4: 

P. L I A R D E T  AND D. VOLNY 

Let 

F ( x )  : ~ b k e 2 ~ i k x  

kEZ 

Isr. J. Math .  

We thus have 

a s  F (p) E L~, v" b' 2 z-.kez k < oc. Let 

FI(X) = E bke2'rikx 
IH<q~-l-1 

For any integer q _> 2 we have 

ISq(F1)[ < ~, Ibkl" IS,,(~"k'~)l, 
1_<lkl_<q~-l-1 

Let qn-1 _< q < qn. Classically 

F is real, hence bk = b-k for all k. Let 

bl : IklPb~, k e z .  

and F2(x)= E bke2rrikx" 

Ikl_>q,,-x 

IS~(F~)I_< ~ Ibkl'lSq(e2=~k'~)l. 
lal>q~-~ 

Sq(e2.ik~) - 1 - -  e 2€ 

and following [13], pp. 122-123, we have 

1 1 
le 2~'ik~ 11 <- 2[ikal-----~l, 

hence 

1 
(16) ISq(~2=~k'~)l-< Ilkod~" 
Therefore, 

n--1 qj--1 Ib~,l 
[Sq(F1)I < ~ ~ iklp. ISq(e2=ik~ I 

Ikl=qj-~ 
qj -- 1 

,~-1 1 Ib~l <E,, E - - -  - q ) - i  Itko~ll j = l  [kl=qj_l 

be the Fourier expansion of F .  From f3  F(x) dx = 0 follows b0 = 0. The function 
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From the structure of the Rokhlin towers for rotations (see 3.4) and (5) it follows 

that 

q~--i qm--1 
q~-i 1 1 I 

k = l  k = l  k = l  
qm-1 q~l~.~ 

2 1 
< Ilqm_l ll2" < 8q 2 

k = l  k = l  

m = 1 ,2 , . . . .  

({x} denotes the fractional part of x.) 
O O  Let K 2 = ~-:~j=l l /J2;  then by the Schwartz inequality, 

Z IIk ll 
Ikl=q::-i 

- -  < 2v /2KqjBj  < 3 K q j B j  

E q~-I b' 2 where By = Ikl=qj-1 k , J = 1, 2 , . . . ,  hence 

n - 1  

(17) ISq(F1)l < 3 K  ~ Bj  . qj - -  p ~ 

5= 1 q ) - i  

The functions x ~ Sq(e 2nikz) are mutually orthogonal, hence for 

q~-I b~ . Sq(e2,~ikx), 

Ikl=qj-1 
j = 1 , . . . , n -  1, we have 

n-1 ~ qJ 
(18) E F21 = E E IFI,jl2 < 9 K  2 B y .  . 

j=l j=l 

Now, we shall give an estimate for F2. From the structure of the Rokhlin 

tower described in 3.4 it follows that for any interval J of length llqn_2al[, all the 

intervals TJ(J ) ,  j = 0 , . . . ,  qn-1 - 1 are disjoint and the same result is true if we 

replace a by -c~. Assume that n is even (the remaining case is analogous), n > 2, 

and let g n  be the interval (mod 1) [-lllqn_2(~]l, l[Iqn_2o41 ). For each x �9 g n  

let g(x) be the smallest integer g > 0 such that Te(x)  �9 K~.  The function 

g(.) takes only two values. In fact e = q~-i on the interval [-�89 + 

I]qn_l(~ll , �89 ) and ~ = q~-I + an-2 otherwise. Let (rj) j  be the increasing 
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sequence of all natural numbers r > q~-I such that rcz E Kn. Hence, for each 

j -- 1 ,2 , . . .  we have rj§ - rj E {q~-l ,q,-1 + q~-2} and for all x ~ Kn we still 

get from the Rokhlin tower and (5) 

(19) 

g(x)--I 
*(x)-I 1 < E (  1 1 )  
Y~ [Ix+jail 2 - { x + j a }  2 + { - x  - j a } 2  
j = l  j = l  

e ( x ) - I  
2 1 

<- ![iq~_2~lj2 j2 4 "= 

<_ 8K ~ 1 < 32K2q~_1" 
l { q . _ ~ . { l :  - 

It follows from (16) and (19) that 

, r j+l  --1 
r j + l - 1  jbkj  ,~ / 21rika\ Ibk{ < 1 6 K . q ~ _ l  z ~ y / r j  - -  - -  �9 n i l  I p 

Ikl=~j+1 Ikl=~j+1 

where B}" = ( X-~rj+l-lZ-~jkj--rj-F1Jb~kJ2)l/2'J = 1,2,. . . .  Fromrj  _>j 'qn-1 weget  

oo r3+1-1  

E E  
.4=1 I k l = r j + l  

{b~[ ,~,  2.iaa, 16Kqn_ 1 ~ B}' 16B,,K2qn_ 1 
- q . - 1  j = l  2 - q P - 1  

where B" = ~z_~j=l(V'~ B"2~1123 J . Finally 

~-~ b'. . _< ~ {b~jJ _< B ~ _ l K q q  Isq(e: ' ' r ,")l  q ( j .  q._l)p 
j = l  '=  1 

where B'n_l ----- ( E ? = I  {b'~ 12)1/~. Therefore, 

JSq(F2)J < 2B~ 1K .. q 16K2B "q~-l"  _ _ = V - - +  p ,. 
q n - 1  q n - 1  

from this and from (17) we get (12). 

Similarly as in the case of F1, we can show that 

where C1 is a constant. From this and from (18) we get (13). | 
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Proof of  Theorems5: 1. Le te ,  e ' > 0 , 1 - ( p / ~ ? ) + e < 0 ,  and a _  p < e .  By 

Lemma 4(iii) there exists c ) 1 such that qk ~_ c- qk-1 for every k ~ 1. We thus 

have 

hence 

qp < c,+, qk <_ c ,  qk �9 
k--1 

~?+e' Let n, q be positive integers, q , - i  _< q < qn. We have q _< c .  qn-1,  therefore as 

above 

q < c~ .ql-~+~ 
qP-1  -- 

The numbers Bi are bounded, hence for some constant D (not depending on q), 

(20) 
q . q n - 1 _  q_~l) 1 ~+~ 1 - ~ + (  1+~+(, 

]Sq(F)t <_ D ( - - F - - - •  + <_ D'c~ �9 (q -n  Jr-tln_l + ' " + q l  )" 
q n  - 1 q n  - 2 

From (4) we get qk :> fk, 2q~-i <__ q~+l, k = 1, 2 , . . .  where (fk)k is the Fibonacci 

sequence (f0 = f l  = 1 and fk+l = fk + fk-1);  if 1 - P/~l + e < 0, then 

ISq(F)I < 2Dc~ ~ J k  < oo. 
k=l 

2. If 1 - p/~ > 0 and e > 0, then from 2q,~-1 _< qn+l (see (4)) it follows that  

for some constant E,  

1-~+~ 1-~+~ .q l -~+(  
ql-~+~ + q,~-I + " '  + ql ~ E . 

From this and from (20) it follows that  there exists a constant K,  

ISq(F)I < K(1 + ql-~+e) for all q E 51. 

The second statement of Theorem 5 easily follows. 

3. By similar arguments as above we can derive that  for any e > 0 there exist 

infinitely many n for which 

1-~-e  an 
(21) qn < 

In fact, choose 0 < e' < 7/such that  P - a < e. There are infinitely many n 

with ' -~ '  1- _-~ p (21) follows. qn-1 < qn so that  qn < qn/qn-1 and 
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We have supposed ~ > p, hence (see Lemma 4(iii)) the limes superior of 
p qn/q~-i is infinity. Let (nk)k be an increasing sequence of natural numbers 

such that limkqnk/qPk_l ---- CO. Let 0 < 5 < 1 and define 

r qnk I 
LloU j' ck: ' 

where Ix] denotes the integer part ofx  E ~. Then Bk/qnk --* 0 and ckqP_ l /Bk  --~ 

0, hence (10) holds. By Theorem 2, for every F from a dense G~ subset of C~ 

there exists an increasing sequence of natural numbers kj such that 

limA(ISB~j (F)I > % )  -- 1. 

For e, 6 > 0, 1 - p - e > 0, q~ -- q~k and q = Bk we obtain from this and from 

(21) that 
)~([Sq(F)l > q(1-5)(1-~-e))  > 1 - - e  

for infinitely many q, q~, q < q~. We can take 5 > 0 arbitrarily small, hence the 

third statement of Theorem 5 follows. | 

5. Rotations with bounded partial quotients 

In the case of bounded partial quotients, the results will be much more meager 

than in the preceding case. If a has bounded partial quotients, it is well-known 

that F E .40 with a square integrable derivative is a coboundary. Therefore, each 

function from s (and hence also from Co k, 1 _< k < oo) is a coboundary. The 

next result shows that for the functions with f IF'12dx = c~ this need not be 

the case. The proof of the theorem works for any irrational number a but only 

the bounded partial quotients case is interesting now. The other case follows 

from Theorem 2 and the fact that any measurable coboundary is stochastically 

bounded. 

THEOREM 6: Let a have bounded partial quotients an. Then there exists a dense 

G~ subset Of Ao of functions which are not coboundaries. 

As we shall see in the proof, we can guarantee an existence of a dense G~ set 

of functions F E `40 such that for some ck -* c~, nk --* c~ (depending on F), the 

distributions of (1/ck)S,~ k (F) weakly converge to the standard normal law. At 
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this moment ,  however, we are not able to prove a result as s t rong as Theorem 2. 

I t  is even not  clear whether  a distr ibution which is not infinitely divisible can be 

a weak limit point.  On the other hand, the bounds for the par t ia l  sums can be 

found in a more  sat isfactory way. 

THEOREM 7: Let a be an irrational number with bounded partial quotients an. 

Then for each F E Ao, 

Sn (F)  = o(log n). 

Moreover, for any sequence of positive numbers (Cn)n which converges to O, there 

exists a dense G~ set of f E .40 for which 

IiSn(f)lIoo >_ Cn logn  

for infinitely many n. 

The  first pa r t  of Theorem 7 is well-known with several proofs; for completeness,  

we shall show one of them.  Before proving the theorems,  let us s ta te  the following 

general lemma:  

LEMMA 5: For x, t C [0, 1) and n = 1, 2 . . . .  let 

Fn(x , t )  = 1 # { i :  1 < i < q~,{ia} < x ,{qn{ia}}  < t}. 
qn 

Then 

lim ] F n ( x , t ) - x ' F n ( 1 ,  t ) ] - -  0. 
n ~ o o  

Proof of the L e m m a :  We have {qn{ia}} = {iqna} = {i{qna}}. Wi thou t  loss of 

generali ty we can suppose tha t  n is even (the "odd" case is similar); then  {qna} = 

Ilqna H <_ 1/qn+l SO tha t  {qn{ia}} = i{qna}, i = 1 , . . . ,qn .  Let x , t  E [0, 1); if 

qnHqna]l < t, then  Fn(1 , t )  = 1 and Fn(x , t )  = ~ # { i :  1 < i < qn,{ia} < x}, 

so t ha t  the result  follows f rom the uniform distr ibut ion mod  1 of the sequence 

({ka})k.  Now, assume t _< qnliqnai] and recall t ha t  the sequence ({ka})k  is well 

d is t r ibuted  rood 1 (see [13]). Therefore limM--.~ r ( M ) / M  = 0, where r (M)  = 

supj_> 1 I x .  M - #{ i :  j _< i < j + M - 1, {ia} < x}I. 

For M ,  n g i v e n p u t  q~ = k . M + p w i t h  l < _ _ p <  M - 1 .  Given a n y e  > 0 

we can choose q~, M and k such tha t  r ( M ) / M  < e/2, 1/k < e/2. There  exists 

one number  j ,  0 <_ j <_ k, such tha t  ( j .  M){qna}  _< t < (( j  + 1 )M - 1){qna}. 
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Therefore, 

Ix. #{i:  1 < i < qn, {iqna} < t} - #{i:  1 < i < qn, {i(~} < x, {iqna} < t}l 
j--1 

-< E [ x "  M -  #{i: e. M + 1 < i < (e+  1 ) / , { i a }  < x}l + i 
~=0 

< k . r ( M )  + M <_ cqn. | 

For k = 1, 2 , . . .  let dk be a positive number, I (k)  = I = [0, 5k), uk be a positive 
Vk 

integer and nk = ~-~i=i qe~. The concrete values of dk, 5k, L'k and ~i will come 

out from the proof. We shall suppose that 5k << 1/2nk. On [0, 1) we define 

yk(t) : ~ ( t )  - dk, 
(22) 

/o Pk(t) = fk(x)  dx, Fk(t) = Pk(t) - (x) dx. 

We thus have E l k  = O, Elfkl = 2dk(1 - 5k). We define (for a more convenient 

use of the Rokhlin towers we replace the former definition here) 

thus, 

Sn( f )  = f + f o T -1 + ' "  + l o T - n + 1 ;  

S , ~  (fk) : Sq, 1 ( f k )  -[- Sqt 2 ( f k )  o T -q t~  + . . .  -4- Sq,.~ ( f k )  o T -q'~ . . . . .  qt 'k-1 

(cf. [17, pp. 1(.'1-102]). Let us denote 

~0 t Fk,  j ( t)  ~- Sqti ( f k  o T -q ' l  . . . . .  q'i-1 ) (X) d x  

/o /o ~ -- Sqt j ( f k  0 T -qQ . . . . .  qtJ -1 )(x) d x d u ,  

P~,j(t)= Sq~,(I~oT-I)(x)ax, j = l , . . . , ~ ,  te[O, 1). 

The functions 5% (Fk) o T -q'~ . . . . .  qtJ-1, h , j  0 T 1-qt l  . . . . .  qtJ-1 - f o  h , j ( t ) d t  

and Fk,r have the same derivatives and zero means, hence are equal. Similarly, 

S~(F~) "~ = E j=l Fk,j. 
In each of the intervals [i/qe~, (i + 1)/qe~), 0 _< i < qej - 1, there is just one of 

the points T (0 ) , . . . ,  Tqt~ (0) ([10]). The function Fk,j is piecewise linear. In the 
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sequel we consider the limit case where 6k is so small that it can without loss of 

generality be considered equal to zero (k is considered as fixed); then Fk,j has 

jumps of height dk at points Ti(0), 1 < i < qe~, the derivative F~,j -- -dk  .qej in 

all other points and -Pk,j (0) = 0. Therefore, Fk,j (i/qe~) = 0 for all 0 < i < qe~ - 1 

and we denote by ~i the number {q6 {uia}} (= qej {uia}) where the integer ui is 

determined by {uia} �9 [i/q 6 , (i + 1)/qej) and 1 _< ul _< qej. Finally the function 

Fk,j is on the interval (ui, ui+~] linear, decreasing with slope - d a  �9 qe~, and its 

extremes are - d ~ i  + dk and - d ~ i .  

Proo f  o f  Theorem 6: Using the auxiliary functions F~,j we shall show that F~,j 

can be approximated by independent random variables (which will be denoted 

Fk,j). From T'~5(i/qe) = O, 0 < i < qe~ - 1, the existence of jumps of height d~ 

at points TiO, 1 <_ i <_ qe~, and F~,j = -dkqe,j  at all other points, we get 

L 
1 

(23) < p:,j(x) x < 
- -  - -  3 

The probability that/bk,j < t on [i/qej, (i + 1)/qej ) can be computed as 

Itl 
0 for t < 0, ~ < ~ ,  

( 1__ ~ i -  f o r t < O ,  ~ >  Itl 
qe~ dk ) - d-kk' 

1 (~i+~__~) f o r O < t ,  ~ i < l - - -  
qe~ 

1 
- -  forO_<t,  ~ i > _ l - - -  
q~ 

t 
dk ' 
t 

dk" 

Suppose that x E [0,1] and x = #lqe~ for some # �9 {0,...,qe~ - 1}. Then 

A([0, x) fq {/~k,j < t}) equals 

1 Itl 

E q~j X[1--t/dk,1)(~i), 
i/qtj <x 

for t < 0 ,  

for t > 0 .  

Let us suppose that t is fixed, t < 0, and denote 

Itl'  o < i < - i. 
g(i) = ~i - dk ] 
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We have 0 _< g _< 1. Considering g as a random variable on the probability 

space {0,. . . ,qe~ - 1} with the measure #(i) = 1/qe~ and using the fact tha t  
1 . n 

f gd#  = fo P(g > z )dz  = hm,~__.~(1/n) }-~.~=l#(g > r /n)  uniformly for all g 

with values in [0, 1), we get 

1 _  E g ( i ) =  l i m = ( 1 / n ) ~  1 E X[ r/n'l>(g(i)) 
qe~ o<i<x.qlj r= l  qe~ O<i<x.qtj 

{ = l i m ( 1 / n ) ~ l #  i : O < _ i < z . % , ( , > _ ~ +  . 
r= l  qe, 

Let the positive integer n and e > 0 be fixed. From the definition of ~i and from 

Lemma 5, for ~j sufficiently big we get 

{ ,r}  1 ~ 1_1_# i : O < _ i < x . q e j , ~ i > _ ~ k +  - 
n = qe~ - n 

x # i : O < i < q e j - l , ~ > _ - d ~ k +  < e. 
Tt r= l  qeJ 

For e > 0 and qe, sufficiently big we thus have 

(24) IA([0, x) n {Fk,j < t} - x .  A(Pk,j < t)l < 2e. 

The same result we get for t _> 0. 

For any ~ > 0 we can find finite valued functions fi'k,j on [0, 1) such tha t  

[]Fk,j - Fk,j[[2 < ~, and for each t E ~ there exists an interval Jt C R, t E Jt 

for Jt r 9, A({fi'k,j = t}) = A({Fk,j �9 Jr}), f l f i ' k , j ( x )dx  = O, j = 1 , . . . , u k .  

From (24) and the definition of/vk,j it follows tha t  if the numbers gj+l - gj are 

sufficiently big, 

E {])~(/~k,j = tjlFk,j-1 = t j -1 , . . . ,Fk ,1  = t l ) -  ) ~ ( ~ , j  = tj)l: 

A(Fk,1 t l , . . . , F k , j - 1  = t j -1)  > 0} < r/. 

Therefore, for any e > 0 and s - g j ,  1 < j < vk - 1  sufficiently big, there exists 

a sequence Fk,1,. . . , /~k,,~ of independent random variables (functions on [0, 1)) 

with 

fo 1- (25) Fk,h(X) dx = 0, 

IIFk,y - Fk,jll2 < e, j = 1 , . . . , uk .  
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1 2 By (23) we have (1/12)d 2 <_ fo F~,j(x) dx < (1/3)d 2. For c sufficiently small we 

can suppose (1/20)d 2 < f~ f~ , j (x )dx  < (1/2)d 2, so tha t  for Ek = ~-]~'~1 T'k,j, 

2 ~_ f~ E2(x)dx,  we have (Tk 

Uk d2 < (72 < vk ~2 
20 ~ - - 2 ~k. 

Taking vk so big tha t  d2vk ~ oo as k ~ ce we thus get IFk,jl/ak ~ 0 as k ~ c~ 

independently of j and by the CLT (see, e.g., [18, Theorem 13]), 

(Tk ~ =  T'k,j ~ N(0,  1) in distribution as k --* oo. 

Let t ing fj  increase sufficiently rapidly we can make the e in (25) sufficiently small 

so tha t  
1 ~k 1 

- -  ~ fk , j  = S , , ~ ( f k )  
(7k . 

converge to N(0,  1) as well. 

By (22), the `40 norm of Fk is not greater than  2dk. Hence, choosing dk so 
oo F tha t  ~-]-~-1 dk < c~ we get ~--~k=l k ---- F E A0. 

By Lemma 3, each of the functions Fk can be in .40 arbitrari ly closely 

approximated by a coboundary  with a transfer function in .40; without  loss of 

generality, we thus can replace the Fk s by the coboundaries,  hence each of the 
k--1 part ial  sums ~-]~i=1 F~ becomes a coboundary. We can thus choose the numbers 

V~k-1 v. that vk so big with respect to z..~i=l 

Snk k-1 lim --1 ( F~) = 0. 
k.---,c~ (7k i = l  2 

When F 1 , . . . ,  Fk are given, we choose dk+l, dk+2, . . ,  so small tha t  

oo 

lim --1 Sn~(~-'~. Fi) = 0 .  
k---*oo (Tk i-~-~+ 1 2 

This way, (1/ak)Sn~ (F) ~ N(0,  1) in distribution as k ~ oc. As ak --* ~ ,  the 

part ial  sums S~ (F)  cannot  be stochastically bounded. By [15], F thus cannot  be 

a coboundary.  

The  set of coboundaries G - G o T, G E .40, is dense in ,40. Hence, for each 

N , M  E N the set ?~N(M) = {F  e A0: (3n > N)()~(IS~(F)] > M) > 1/2)} 
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contains a dense and open subset of M0. The set NN~176 N~v/=l ~ ' [ N ( M )  ~-  7-[ thus 

contains a dense G~ subset of .A0 and for each F �9 7-/, the sequence Sn(F) is not 

stochastically bounded, hence F is not a coboundary. | 

Proof of Theorem 7". First, we shall prove the second part  of the Theorem. Let 

K be a positive integer satisfying an _< K - 1 for all partial quotients an. Let 

m be a positive integer (the value will be specified later) and let k be fixed. We 

put  gi = i - m ,  i--- 1 , . . . , uk .  

Let n = gj = m .  j be a given even number (hence {qna} = Ilqnall), ~i = 

{q,~{uia}} where {uia} �9 [i/qn, (i + 1)/q,~), 0 _< ui _< q~. Using the same 

argument  as in the proof of Lemma 5, we have ~ = {ui{qna}}, hence 0 < ~i _< 

qn{aqn} (<_ 1). Notice that  by (4), 

qu+2 = au+2qu+l -]- qu <_ K �9 qu+x 

for all integers u > 0. By (7), (5), (4) we thus get 

1 - qnllqnall >_ 1 - qn+lllqnall = qnllqn+lall 

>_ q,~/(2qn+2) >_ qn/(2K2qn) ---- 1/(2K2), 

hence 

- d k ~ i + d k � 9  0 < i < q , ~ - I  

so tha t  the maximum -dk~i + dk of l~k,j on the interval ({u/a}, {ui+la}) is 

greater than  dk/(2K2). From the definition of the function Fk,j we get that  

~kd (x) > dk f o r x � 9  
- 4K 2 

i = 0 , . . . ,  qn - 1. A similar situation happens when n is odd. 

For m big enough we have q~,+,n _> 12K2q~, for all u = 1,2 . . . .  and 

qel + " "  + qt~_l < qe~- Hence, there exist x �9 [0, 1) such that  

fi, k,j(Tl-qtl . . . . .  qtj_lx ) > dk for a l l j  = 1,2, uk, tj = j . m ,  
- 4K 2 " " ,  

hence 
dk 

S,~k (Fk(x)) >_ U~4g 2. 

From qn+l <~ Kq,~ we get 

b'tz V~ 

nk---- E q m d  < E K  m'j < K m(v~+l), 
j = l  j----1 
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hence 

Therefore, 

1 
- -  log K nk _< uk + 1 .  
rrt 

dk 
Sn~(Fk(x)) >_ 4K2----Z-~m (logg nk - m). 

We can choose uk as big as we need, hence we can get 

Snk (Fk(x)) > 3cn, log 2 nk. 

The functions Fk can be in .A0 arbitrarily closely approximated by coboundaries 

with transfer functions in .40 (see Lemma 3); we can thus replace them this way. 

Having the numbers n l , . . . ,  nk-1 fixed, we can therefore choose nk so big that  

k-1  1 

Z IsupS'~(FJ)I/(c"~ l~ nk) -< ~; 
j=l 

choosing the number dk sufficiently small we get 

j=k+l 

and 

converging in ,4o. We have 

O 0  

F = y ~ F k  
k--=l 

sup Sn~ (F)/(e,~ log 2 nk) > 2 

for infinitely many integers k. 

For any G C .40 we have 

Sn~ (F + G - G o T)/(cnk log2 nk) > 1 

for infinitely many integers k. The set of coboundaries G - G o T, G C ,40, is 

dense in .40 (see Lemma 3). The set ~n  = {F: 3N > n, sup SN(F) > cg log2 N} 
�9 o o  7 - ~  is dense and open in A0 and for each n = 1, 2 , . . ,  7-/= An=l ~ is a dense G~ 

subset of M0 and for each F E 7-l, Sn(F) > cn log2 n infinitely many times�9 This 

proves the second part of Theorem 7. 
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Let us suppose tha t  for some c > 0 and F E fl, o we have 

(26) lim sup sup Sn (F)  / log 2 n > c. 
n - - - * o o  

For any bounded  function G we then have 

lira sup sup S~,(F + G - G o T ) / l o g  2 n > c. 
n - - - ~ O O  

By L e m m a  3 the set of coboundaries G - G o T with G E A0 is dense in ,A0, 

hence for every k > 0, in every open nonempty  subset of A0 there exists a function 

G - G o T + k . F ,  G E A 0 .  For a n y N E N t h e r e e x i s t s n _ > N w i t h  

sup S,~(k. F + G - G o T ) / l o g  2 n > k .  c. 

This proper ty  remains valid for a sufficiently small open neighborhood of 

G - G o T + k �9 F ,  hence the set 

Hg,k -~ {F  E r 3 n  ~_ N, supS,~(F)/ log2n > k .  c} 

is open and dense in ,40. Then  H = NN=I Nk~ HN,k is a dense G~ subset of  

,40, hence nonempty.  For each F E H we have 

lira sup sup Sn (F)  / log 2 n = co. 
n - - - r  

The discrepancy ND* N of the sequence {na}  is bounded by d .  log 2 N for some 

constant  d (see [13], Theorem 3.4, p.125) and by the Denjoy-Koksma ' s  theorem, 

ISn(F)I < b. log 2 n for all n -- 1, 2 , . . .  and b -- d.  V ( F )  where V ( F )  denotes the 

total  variat ion of F .  Therefore, l imsupn_o  o sup ]Sn(F)]/log 2 n must  be finite. 

This contradict ion shows tha t  (26) cannot  hold for any F E A0, hence 

lim sup sup [S~(F)[/log 2 n = O. I 

Remark: The proof  of the existence of Fk such tha t  

dk~k 
Snk(F(x))  >_ 4K----- ~ 

can be easily extended to a function F which has a j ump  of height d at  1/2 and is 

linear otherwise (with constant  slope and F(0)  = 0). F is a zero mean  bounded  
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variation function and, using the same approach as in the preceding proof, we 

can show tha t  there exists a discontinuum of points x for which 

d .  ~k 
Sn~(F(x)) > 4K~ 

~k for all integers t/k, nk = ~ i = 1  q~.m. Therefore, 

sup Sn (F)  > c .  log 2 n 

for some c > 0 and infinitely many  n. The proof  of the first par t  of Theorem 7 

thus cannot  work for general bounded variation functions, i.e. the coboundaries 

G - G o T with G bounded are not dense in tha t  space (with respect to the 

variation topology).  In fact, even the coboundaries with measurable transfer 

functions are not  dense in tha t  space. 
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