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ABSTRACT

Let T be a homeomorphism of a metrizable compact X, the sequence ci/k
tends to 0 and ¢ tends to infinity. We’ll study the limit behaviour of the
distributions of the sums (1/cg) Z::Ol F o T% where F is from a space of
continuous functions — the central limit problem and the speed of conver-
gence in the ergodic theorem.

The main attention is given to the case where X is the unit circle and T
is an irrational rotation; in this case we consider the spaces of absolutely

continuous, Lipschitz, and k-times differentiable functions F.

1. Introduction

Let (T,9,.A, A) be a dynamical system given by a measure preserving transfor-
mation T:  — € of the probability space (£2,.4, ). The limit behavior of the
sums S,(f) = Z?;ol o T* is a topic which is intensively studied in ergodic
theory and probability theory. The Birkhoff ergodic theorem says that if f is
integrable, (1/n)S,(f) converge pointwise a.e. Burton and Denker proved that
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for each ergodic and aperiodic dynamical system there exists f such that for the
process (f o T*) the central limit theorem holds ([2], see also [4]). Lacey proved
a convergence to self-similar processes ([14]). On the other hand, Volny [20]
proved that for a generic set of functions from L, 1 < p < oo and any sequence
(¢n)n such that lim, ¢, = oo and limy, ¢, /n = 0, the distributions of (1/¢,)S.(f)
converge (along subsequences) to all probability laws (the case of p = co can be
proved in the same way, using the fact that measurable coboundaries are dense
in L, cf. [9]). This shows that in the Birkhoff theorem, an arbitrarily slow rate
of convergence is not only possible but also generic (more results on the speed of
convergence in the ergodic theorem are given in the monograph [12]).

Here we shall first consider the situation when T is a homeomorphism of a
topological space and f is continuous. When considering the space of continuous
functions Co(X) on a metrizable compact space X, with null integral for each T-
invariant Borel probability measure, we get the same results as for the LE spaces
on a general probability space with an aperiodic measure preserving transforma-
tion (Theorem 1). Further results concern the spaces of absolutely continuous,
Lipschitz, and continuously differentiable functions for an irrational rotation of
the unit circle (our results thus treat one of the simplest differentiable dynam-
ical systems). The Koksma-Denjoy Theorem shows that for bounded variation
functions, the rate of convergence in the Ergodic Theorem cannot be arbitrarily
slow. For example, if the rotation is given by the golden number, the suprema
of the partial sums of any zero mean absolutely continuous function grow with
a rate slower than the logarithmic one. As we shall see, the results depend on
Diophantine properties of the rotation.

In the case of rotations  — z+a mod 1 where the continued fraction expansion
of & has unbounded partial quotients, we shall show results similar to those which
hold in LP spaces or in the space of continuous functions; our problem can be
considered as satisfactorily answered in this case. As a corollary we get a (known)
result giving conditions for the existence and genericity of k-times continuously
differentiable zero mean functions which are not coboundaries. We shall also
prove the existence and genericity of ergodic cocycles for a cylindric flow.

The results concerning the bounded partial quotients are much less complete.
We shall prove that for a generic set of absolutely continuous zero mean functions
F, there exists a weak convergence to the standard normal law along subsequences
of (1/¢4)Sn(F), with lim, ¢,, = co. The partial sums S, (F) are thus not stochas-
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tically bounded, hence F are not coboundaries (see [15]). We shall give bounds
for the suprema of S, (F).
The paper is based on research done during a visit of the first author in Praha

and several visits of the second author in Marseille.

2. Continuous functions on a compact metric space

Let X be a compact metric space, 7: X — X a homeomorphism of X onto
itself and let A be a T-invariant Borel probability measure. We suppose that
the measure X is aperiodic (see [5]). C(X) denotes the space of all real valued
continuous functions on X and Cy(X) is the space of all f € C(X) with [ fd\ =0
for any T-invariant probability measure A. By ||.|loc we denote the supremum

norm in C(X).

THEOREM 1: Let the measure A be aperiodic. Let (¢,), be an unbounded
increasing sequence of positive integers with ¢, /n converging to 0. Then there
exists a dense Gs set of functions f € Co(X) such that for each probability
measure v on R there exists a sequence of positive integers ny — oo for which
the sequence of distributions of (1/cn,) Y7~ f o T weakly converges to v.

As a corollary we get a result saying that for continuous functions, the
convergence in the Birkhoff theorem may be arbitrarily slow {cf. {12]).

COROLLARY: Let (c,), be as in Theorem 1. Then there exists a dense G set
of functions f € Co(X) for which there exist subsequences (cy, ), such that k —
(1/cn,) 2o5%, f o T7 diverges to infinity in the measure.

Let U: C(X) — C(X) be the operator defined by Uf = f o T, and let I be the
identity operator.

For proving the Theorem we shall need to show that in Co(X), the set of
coboundaries is dense. Similarly as in the LP spaces, 0 < p < oo, this can be
easily proved using a duality argument. The results should be well known to the
specialists, e.g. the next lemma can be found as Proposition 9.12 in [8] (Professor
Lemariczyk kindly informed the authors about this reference.)

LEMMA 1: (I - U)C(X) is a dense subset of Co(X).

Proof: Let us suppose that (I —U)C(X) is not dense in Co(X). Then there exists
a finite real-valued measure A on X and f € Co(X) such that If dX # 0 and
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fgdr=0forall g e (I-U)C(X). For h € C(X) we thus have [(h—Uh)d\ =0,
hence A is a T-invariant measure. Let {4, B} be a measurable partition of X
representing the Hahn decomposition of A Le. :\(E )} > 0 for every measurable set
E C Aand A(F) < 0 for every measurable set F C B. Let C = ANT~A. Then
A(C) > 0 while TC N A = @, hence TC C B, hence A(T'C) < 0. From this and
A(C) = A(TC) follows A(C) = 0, therefore A is an invariant set and B is thus
invariant as well. Considering the multiples of the measures A*(E) = A(E N A)
and A=(E) = ME N B) we derive that there exists an invariant probability
measure Ao with f fd:\o # 0, which contradicts the supposition f € Cg(X).
n

Proof of Theorem 1: The proof can be done in a similar way as the proof of
Theorem 1 in [20]; Lemma 1 plays the same role as the Lemma in [20]. Notice
that the density of (I —U)C(X) in Co(X) is sufficient, in fact we do not need the
density of (I — U)Co(X).

Let T' be the set of all probability measures v on R supported by finite sets
of rational numbers, with rational values, and [z dv(z) = 0. One can easily see
that I' is a countable set, dense in the space of all probability distributions on R
(equipped with the topology of weak convergence).

The set of the weak limit points of the distributions of (1/¢,)S,(f) is closed
for each f € Co(X), hence for the proof of Theorem 1 it suffices to prove that for
an arbitrarily chosen v € T there exists a dense G set of f € Co(X) for which the
distributions of (1/¢,, )Sn, (f) weakly converge to v for some sequence of positive

integers nj — oo.

Let v € ' and let n be a positive integer. There exists a positive integer m and
rational numbers z,,...,z,, r < m, such that v({z;}) = m(j)/m, 1 < j <,
where m(j) are positive integers such that Z;zl m(j) = m and Z;zl z;m(j) =
0. The measure A is regular, so that for every measurable set A and € > 0 there
exist an open set A C A’ and a closed set A” C A with A(A’\ A”) < e. From
this we can easily derive that in the Rokhlin Lemma, the base set can be taken
open. For any § > 0 there thus exists a Rokhlin tower V,T-1V,..., T »™+1y
where V' is an open set, and a continuous function @, 0 < @ < 1, which is zero on
X \V such that A(X22 1 goTi = 1) > 1 -6 (ie. the sets V,...,T-"m+1y
exhaust most of X and ¢ is close to the indicator function of V).
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Define
m—1 )
W=7V
j=0
and
m(1)-1 _ m(1)+...4m(r)-1 '
(1) Y =11 Z poT? ™+ ... 4z, Z poTim,
3=0 j=m(1)+...+m(r-1)

Hence, W, T-'W,..., T-("~DW is a Rokhlin tower, ¢ is zero on X \ W, and

the distribution of Z;:ol @ o T* is close to v. For any invariant measure X we

/cde\:ijm(j)/ $dA =0,
j=1 v

have

hence ¢ € Co(X).

Let € > 0 be given. As limg_,o,(ck/k) = 0, we can choose k big enough so that
(ex/k) max;<j<r || < €. We can also suppose that n is so big that k- A(W) < e.
Define Aw (.) = A(. | W), the conditional probability given W.

For 6 sufficiently small we get § < ¢ and

<e forte(—kk).

}/exp(itgo(a:))d)\w(x) - /exp(itm) dv(zx)

Define
Ch n—k )
f= T z=:0 poT?;

we thus have ||f|le < €. For s=k~1,...,n ~k we have

/ exp (it—Sk(f)> d\ = / exp(it - @ o T®) dX = A(W) / exp(ity) dAw .
T=*W Ck T-sW

Therefore,

<e

n—k R
) /T_,W exp <25k(f)) d\ — (n+2 = 2k)A(W) /exp(itaz) dv(z)

s=k-1

hence
< 4e.

Eexp (%Sk(f)) - /exp(ita:) dv(z)
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There thus exists a sequence of positive real numbers (7 ), converging to 0, and

functions fi € Co(X) such that

Eexp (Cl_tsk(fk)) - /e“’ dv(z)| <m for t € [~k, k],
K

lim ||fxlleo = 0.
k—oo

For each k£ = 1,2,... there exists an open neighborhood U(f;) of fi such that
for f ceU ( f k)

Eexp (E—ZSk(f)> — Fexp (%Sk(fk))’ < %, t € [k, k],

1
< E +n, tE€ [—k,k].

Eexp (%Sk(f)) —/e"z dv(z)

Let by, £ = 1,2,... be positive real numbers such that limy b = oo and
limg (bg/cx) = 0. For each k define

U = {g € Co(X): [Iglloo < br}

and

o0 (oo}

He = JWU(fa)+ (U= Dhy), H=[)Hs

n=k k=1
The sets Hj, are open and by Lemma 1, |J,> (U — I)U, is dense in Co(X), so
that H is a dense G5 set. Let f € H. For any positive integer k we have f € Hy,
thus for all n > k there exists a decomposition f = ¢’ +¢"” —Ug” with ¢’ € U(f,.),
g" € U,. Hence

Bexp (5,(¢)) - [ e anta)

1
< ﬁ+nn for t € [-n,n]

n

and
2b,,
<=

1
E_Sn(gll _ Ug")

n

1
=—llg" - urg"||
n

(o)
Therefore there exists a strictly increasing sequence of integers n;, such that the
distributions of (1/¢y, )Sn, (f) weakly converge to v. ]
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3. Rotations on the circle

3.1 ABSOLUTELY CONTINUOUS AND SMOOTH FUNCTIONS ON THE CIRCLE. Let
T be the unit circle represented as the unit interval [0, 1) with the Borel o-algebra
and the Lebesgue probability measure A. For an irrational number « € [0,1),
T = T, denotes the rotation £ — & 4+ a (mod 1) on T. The functions on T will
be often called cocycles. A cocycle F of the form F = G —~ G o T is called a
coboundary, G is its transfer function.
We consider the following spaces:
- Ap is the space of all absolutely continucus cocycles F for which
Jy F(t)dt =0,
~ Ly is the space of all Lipschitz functions from Ay,
- Cé‘ is the space of all cocycles with continuous k-th derivative and with zero
integral (1 < k < o0).
An absolutely continuous cocycle F' has a derivative f = F' a.e.; for F € Ag
we have f € L}(T) and for F € Lo C Ag we have f € L=(T). By the definition
of f, fol f(z)dz = 0 and we have

(2) F(t):/of(x)dx—/o /Ouf(a:)dzdu, 0<t<l

Therefore, F(0) = — fol fot f(x) dzdt. Formula (2) thus defines a bijection between
Ao and L}, and between Lo and L.

On the spaces Ap and £ we introduce respectively the norms
1
1 Fll.40 = / [F'(t)|dt  and ||F|lg, = es5 Sup |F'(#)].
0 €

When there is no danger of confusion the norms will be used without subscripts.
Ag and Ly with the norms introduced above are Banach spaces and the relation
(2) gives their isomorphisms onto L} and LS respectively.

Let F € C(’)“, 1 < k < 0o. Then the k-th derivative F¥) is a continuous function
on Co(T) and (2) shows that we can (by iterations) get F' back from F*). The
space C& is thus isomorphic to Cy(T) and the metric inherited from C(T) furnishes
C& with the standard topology of C¥. On C° we have the coarsest topology with
respect to which all the functionals from all C¥, 1 < k < oo, are continuous.

In the Proof of Theorem 1 we took advantage of the fact that the coboundaries
are dense in Cp. In the next two lemmas we prove that for Ay, Lo and Cf,
1 £ p € 0, this holds, too.
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LEMMA 2: Let £ be any of the spaces Ay, Lo or C(’)c, 1<k<oco. IfFe&and F'
is a coboundary, and F' = G' — G’ oT where G € £, then F is also a coboundary
and F=G —-GoT.

Proof: Let F € £. Following (2) we have

F(t):/OtF'(x)dx—/Ol/OuF'(:r)da:du.

Suppose that F' = f =g —goT and G(¢) = fotg(x)dx. Then

' F(t):/otf(x)dx—G(a):G(t)——G(t+a). N

LEMMA 3: In the space Ag (resp. C¥, 1 < k < 00), the set of the coboundaries
G—-—GoT,

with G absolutely continuous (resp. G € Cf), is dense.
In Ly, the set of coboundaries with G measurable is dense.

Proof:  The set of all coboundaries g — go T, g € L}, is dense in L}. Their
images in Ag in the isomorphism between L} and Aj are thus also dense and
by Lemma 2 they are coboundaries with transfer functions from .4g. In the
same way (using Lemma 1) we prove that the coboundaries with continuously
differentiable transfer functions are dense in C§. Now, Lemma 2 enables one to
extend the result recursively to all C§, 1 < p < oo.

The set of coboundaries F' = G — G o T with G € C* is dense in every C},
1 < p < oo, hence it is also dense in C§°.

The set of coboundaries with integrable transfer function is not dense in L
(see [8] or [9]) and similarly, we can easily prove that the coboundaries with
absolutely continuous transfer functions are not dense in £q. The proof of the
Lemma for £, is given in [21] (and is much more complicated than in the previous
cases). |

3.2 THE DENJOY-KOKSMA THEOREM. Let £ = (2n)n>0 be a sequence in T.
The discrepancy to the origin D% (€) of £ is by definition the quantity

. 1
Di(€) = max [t =% Y Loo(a)|
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For z, = T"z = na+z mod 1, z € [0,1) = T, we have D} () = o(1), i.e. £ is
uniformly distributed mod 1.

For all maps f: T — R of bounded variation V(f) one has the so-called Denjoy-
Koksma inequality

1
Q N [ f0a- ¥ fen)| < VIONDi(E©

0<n< N

(see e.g. [13], Theorem 5.1, p.143). If o has bounded partial quotients, there
exists a constant ¢ = ¢(a) for which ND} < 3+ clog N (see [13, Theorem 3.4]
where ¢ is given); if « is of type 7 (see the next paragraph 3.3 for the definition),
then by [13, Theorem 3.2] for every e > 0, ND% = O(N(=1/M+¢) Therefore, the
rate of convergence in the Ergodic Theorem cannot be arbitrarily slow already

for the functions with bounded variation.

3.3 DIOPHANTINE APPROXIMATION AND DISCREPANCY. In the sequel we shall
need results on the discrepancy of sequences (na (mod 1)),. To this aim we
recall some basic facts on continued fraction expansion. By ||z||, z € [0,1), we
shall denote min{xz,1 — z}. For z € R let [z] denote the integer part of z and
{z} = z — [z] the fractional part.

Let o = [0; @1, a,...] be the continued fraction expansion of a € [0,1). The
convergents p, /g, of x are given by the following recurrent formulas (see [11])

(4) Prntl = Ont1Pn +Pno1 80 Gnyl = Gnii1Qn + Gnoi

for n > 1, with po =0, p1 =1, ¢ = 1, ¢1 = a;. We recall the following basic
formulas (see [11]):

1
5 <llgno|| < —, nall = lgha — = min mal|,
(5) TR lignel| P llgncll = |gne — pnl g mn llmed|
(6) llgn—20|| = anllgn-12| + llgna],
(7) Gntillgnal] + @nllgnrall = 1.

We thus have in particular

8 On|lgn-10|| 2
(8) llgn -1l 4gn1

2
(9) Qn~1an”q'n—1a|| >1- E‘

n
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Indeed, for a, = 1 we have ¢, = ¢n-1 + qn-2 < 2¢n_1, hence a,|lgn—1a] >
1/2¢, > 1/4qn_;1. For a, > 2 we have

anllgn-12l 2 an/2¢n > an/2(angn-1 + gn-2) > 1/4¢n-1.
This proves (8). The inequality (9) is also a consequence of (5) and (7). In fact

Gn-10n||gn-12|| = gnllgn-10l| — gn—2(lgn-10]]
=1— gn-1llgnall ~ gn-2|lgn-10]|
> 1~ (gn-1/n+1) — (gn-2/9n)
>1-(2¢n-1/92) 2 1 - (2/an)

as required.
We say that « is of type 7 if

n = inf{r € R: there exists ¢ > 0 such that for all ¢ € N, ¢"||ga| > ¢}

(see [13], Lemma 3.1, p. 121); if for every ¢ > 0 and 7 > 0 there exists ¢ € N
with ¢"|lgall < ¢, we say that a is of type infinity. The next statement gives

some useful characterizations of the type.

LEMMA 4: For any irrational number « € [0,1), the following are equivalent:
(i) « is of type n,
(i) p=inf{re R 3¢>0,Yn >0, any1 < ¢~ Y/c},
(ili) n=inf{r e R J¢ >0, Vn >0, got1 < qj/c}.

Proof: Let 7 > n and let ¢ > 0 be such that ¢7||ga|| > ¢ for all natural numbers
g. Then for all indices n one has (cf. (4), (5))

T7—1

< an
In+1 - On41

c< qpllanall < g

Therefore, an+1 < g5, !/c. Reciprocally, assume that for 7 > 1 there exists ¢ > 0
such that a,y; < c-¢7! for all n > 0. Then, for all ¢ € N and n such that
¢n < g < gnt1 We get successively (cf. (5))

T—1
1 >lq" >l

9" gl > q;llgnal] > g7, > > —.
lgall 2 gallgned "2(an419n + gn-1) ~ 4dans1 ~ 4e

Therefore (i) is equivalent to (ii). The proof of the equivalence between (ii) and
(ii1) is left to the reader. 1
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3.4 ROKHLIN TOWERS FOR ROTATIONS. Let us suppose that n is odd so that
gn—10 — Pn—1 is positive. Then [0, 1) splits into two Rokhlin towers:

[{ja}?{(qn—l +])a})7 jzoa'--aQn—l
is the bigger one and

{ana}, 1), {(G+gn)a}, {jo}), j=1,...,gn-1—1

is the smaller one.

For n even we get

[{Qn——la}a 1)7 [{(Qn—l +j)a}v {Ja})a J=1...,q.—1

as the bigger tower and

[{ja}v {(.7 + Qn)a})v J=0,...,qp1 -1

as the smaller one.

4. Rotations with unbounded partial quotients

In this section o will denote an irrational number in [0,1) with unbounded paz-
tial quotients. We shall study the weak convergence of distributions of sums
EIZSB::(F) where By, — o0, ¢ — oo or ¢y = 1 for all k, F' is from one of the
spaces Ag, Lo, C§, 1 < p < o0.

The result, Theorem 2, immediately gives as a corollary a rate of the growth
of the partial sums S, (F). The next two theorems show that the rate is in some
sense the best possible. As a consequence of all three theorems we get known (cf.
e.g. [1] or [8]) necessary and sufficient conditions of the existence and genericity
of ergodic cocycles in C, 1 < p < o0.

Let p be a positive integer. If limsup,_, . ¢»/¢"_; = 00, there exist positive

integers ni, By, ¢k, for which limg ny = oo and
Bk/an - Oa quf“c_l/Bk hand 0, and Cp — 00,

(10) or
Bi/Gn, =0, cxgh, _1/Br—0, cx=1 forallk and {Bya}— 0.
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THEOREM 2: Let £ be one of the spaces Ag, Lo, C5, 1 <p < oo. If
(a) (10) holds true for p =1 and & equals Ag or Ly or Cy, or
(b) (10) holds true forp=7r and € =C}, 1 <r < o0, or
(c) (10) holds true for all positive integers p and £ = C§°,

then there exists a dense Gg set of F' € £ such that

1
the distributions of —Spg, (F') are a dense set
(11) Ck

in the space of all probability measures on R.

Remark: The sequences (ng)k, (Bk)k, (Ck)k, for which the assumptions of
Theorem 2 are fulfilled, can be found:
for £ = Ay, Lo if @ has unbounded partial quotients,
for £ = C} if the type of a is greater than p,
for £ = C§° if a is of type infinity.
Taking in (10) the sequence of ¢, constant has been motivated by the following
application: For a real cocycle F on the circle we define the skew product Tp;

i.e. the transformation
TF(xa y) = (T.’L‘, Yy + F(.’L‘))

on the cylinder T x R preserving the product measure. If the transformation T
is ergodic, we usually say that the cocycle is ergodic.

If a is as in the Remark, the assumptions of Theorem 2 are fulfilled with ¢, = 1
for all k, hence for a dense Gs subset of F' € £ the subsequences of Sp, (F)
converge in probability to all constants. Hence, the Essential Value Condition
which is sufficient for ergodicity of F' (see [19]) is fulfilled, namely:

For every set B of positive measure, a € R and ¢ > 0, there exists n such that

AMBNT™™BN{a—-e< S, (F)<a+e})>0.

As a corollary to Theorem 2 we thus get

THEOREM 3: Under the same assumptions as in Theorem 2, there exists a dense

G set of ergodic cocycles F € £.

The result has been known for smooth functions, for absolutely continuous
ones it seems to be new. Theorem 3 (as well as the corresponding version of
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Theorem 2 using ¢x = 1) was found during the second author’s stay in Torun

thanks to Professor Mariusz Lemariczyk.

Proof of Theorem 2: Let us first suppose that £ = C§, 1 < p < co. Similarly
as in the proof of Theorem 1, I" denotes a countable and dense set of probabil-
ity measures v on R supported by finite sets of (now, not necessarily rational)
numbers and [ zdv(z) = 0.

We suppose that v € T is fixed; similarly as in the proof of Theorem 1 it suffices
to show that (11) holds for a dense G5 set of F' € £. From now on, functions on
the circle will be understood as 1-periodic functions on the real line.

Let H be a step function on [0,1) with Ao H~! = v; H is constant on the

intervals (z;,zi11), 0 =29 < x3 < -- < Ty, =1. Let
0<é min  (x;41 — x;)/3,
<6< Ogigm-l( i+1— Zi)/

=z + 6,2 =241 —-6,0<i<m—1

We shall define a function H; € £ which equals H on the intervals (2}, z7),
|Hy < |H| and HP(0) = 0 = HP(1), 0 < j < p (H® = Hy, p is from the
definition of £). In fact, there exists a function A € C° which is of constant
sign on the intervals (x;, %), and on (27, z;+1) (the sign of 0 is + by definition),

equals zero on (x}, z}),

z, Tit1 . .
/hd/\z—/ hdA:H(f%ﬁ’fi),

fori=0,...,m — 1 and finally
h(’“>(0) = h(’“)(l)

for all k > 0.
For any positive integer p, the function

Hi(t) = /0 h(z) dz

fulfills our needs. Moreover, for a given p put by = h(®=1) for short; then we still

t Tp—1 1
Hl(t) = / / / hl(I) dxdxl...da:,,_l.
0 Jo 0

have
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Choosing § sufficiently small, we can have Hy = H on [0,1) up to a set of
arbitrarily small (positive) measure.

The interval [0, 1) splits into two Rokhlin towers as shown in Section 3.4. For
simplicity (and without loss of generality) we suppose that n = ny is odd and we
define new Rokhlin towers Jy,...,J;, _,—1 by

a,—1

Jo = [0, anllga-ral) (= |J T[0, lgn-121))),
=0

J;=T'J, fori= 1,...,qn-1 — 1.
The intervals J; are mutually disjoint and by (9),

gn—-1—1 2
A Ji) = gn—1an||gn- >1-—.
( il:J() ) = gn_10 Hq 1a|| 2 o
Let us denote n = n; when this causes no confusion. Define
1 T
ha(x) = hl( ), z € Jo,
(anllgn-12))P " \ anllgn-12l

%k-hg(T_iIE) forzeld;,, 1=0,...,¢p-1—1
flz) =

gn—1—1
0 for ze0,1)N U U,
=0

t pxp_1 T1
F(t)z// / f(z) dedey ...dep_y, te[0,1).
0 Jo 0
We thus have
FP = f,

Ck “h1“oo Ck
- —— < _2p P_ h

(as by (5) and (4), anllgn—10]| > an/2¢n > 1/2¢,—1). By the assumption (10)
we have limy, ckgh, _, /B = 0, hence for every e > 0 we can find & big enough so
that ||Fllcp = [|fllc < €. A straightforward computation gives

B
Bs p(e) = my <_J”—) on Jo,
Ck

an|lgn-1c]
B B :
—-EF(:C) = ZEp(Tis) on J;, i=1,...,¢p—1 — 1, and
Cr Cr
Bk Qn_l

—F(z)= on [0,1)~ U Ji.
=0
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Denote by = [Bk/gn-1]. By the definition, the functions f o T¢ where ¢ =
=1 —Jqn-1, 0 £ i < gp_1—1, 0 < j < b — 1, have the same values on the
intervals

T (anllgn-1aliz}; anllgn-10(2y), 0 < 7 < gro1 — 1, 0 < s < m — 1, except
on intervals at both extremities of lengths at most bx|lgn—10|| = (bx/an)A(Jo);
moreover limy (bx/an, ) = 0. Therefore, for any € > 0 we can choose § sufficiently
small and k sufficiently large such that By F = Spg, (F') with probability bigger
than 1 —e.

For each of the intervals J;, j =0,...,¢,-1 — 1,

apflgn—12| 1
/ CitBRF(@)/ck gy =/ ! GtBRF(2)/ck gy — an“q'n—la“/ it () g
J 0 0

M

from this and from 1 > g¢n_1a4|lgn—1c|| 2 1 = (2/a,) (cf. (5), (4), (9)) we get

1 1
/ eitBk F(z)/cr dr — / eitH1 (z)dx
0 0

1
eitBkF(z)/ck dr — (1 _ Qn—lanHQn——la“)/ eitHl(:c) dr
0

/[0,1)\Uq"_1_1 J;

7=0

For any € > 0, we can thus find F € £ and a positive integer k(e) such that
|Fllep < € and

1 1
/ exp(itHy) dA — / exp(itSp, (F)/ck) d/\‘ <e
0 0

for all £ € R and k > k(¢). The function H; can be found equal to H on [0,1) up
to a set of arbitrarily small (positive) measure, hence there exist F' and a new
k(e€) such that

1 1
/ exp(itH) dX — / exp(itSp, (F)/ck) d)\‘ <e¢ forteR and k> k(e).
0 0

There thus exists a sequence Fy, € C} such that the norms of F} in CP converge
to zero and the distributions of (1/cx)SBs, (Fx) weakly converge to v. From this
and the density of the set of coboundaries in C§ we can derive (11) using the
same arguments as in the proof of Theorem 1.
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The proofs for £ = Ay and £ = Lg follow from ||Filla < || Fellz < || Feller-

It remains to prove the Theorem for £ = C§°.

By the previous construction there exists a sequence of Fy, € C5°, k € K, where
K is an infinite set of positive integers, the distributions of (1/cx)Sp, (Fi) weakly
converge to v, and the sum ), . [|Fi||c» converges for every 1 < p < co. By
Lemma 3 we can replace each Fi by a coboundary Gy — Gy o T with Gy € C*.
Because ||Bral| — 0 as k — oo (recall that ||z|| denotes the distance of « from
the set of integers), we can (replacing K by a suitable infinite subset) guarantee
that (1/ck) > ;ck jex SB(Fj) — 0 in the measure as K > k — oco. From
the decay of the norms of Fj it follows that for a suitable infinite subset of
K we also have (1/cx) 3°734 jek 5B, (Fj) — 0 in the measure. Hence, for F =
> kek Fr € C5° the distributions of (1/cx)Sp, (F') weakly converge to v. Because
the coboundaries are dense in C§°, we can derive (11) using the arguments from

the proof of Theorem 1 once again. |

THEOREM 4: Let F € CF. Then there exist positive numbers C, By, Ba, ... such
that

S Bl < [E @) o
1=1

and for any positive integer q,

(12) |Sq(F)| <C (Bn pq + Bn_lq;‘l 44 Bl%)
n—1 n—2 9

and

(13)

2 2 2
/SZ(F)(x)deC’Q (B,%( ,,q ) +BZ_, <q2‘1> +---+B? (q—i) )
In-1 Qn—2 o

where gn—1 < q¢ < ¢n.
As a corollary to Theorems 2 and 4 we get

THEOREM 5: Let a be of type n, p > 1 be an integer and F be an arbitrary
function from C§.

(1) Ifn < p, then there exists a constant C such that
|Sn(F)| < C

for all n.
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(2) If 5 > p, then for every ¢ > 0 there exists an integer § such that for every
9249,

(14) |Sq(F)| < g5+

and
(3) there exists a dense Gs set of F € C} such that

(15) MSe(F) > g ™57 > 1

for infinitely many positive integers q.

Remarks: If we take p = 1, Theorem 5 remains valid and the proof works
for Ay and £y as well as for Ci. The upper bound in this case can be also
found in [13] by combining Theorem 3.2, p. 123, which gives an estimate of the
discrepancy of § = ({ia})i>0 where a € (0,1) is an irrational number of type 7,
D%(&) = O(N(=Y/m+€) "and the theorem of Koksma-Denjoy which holds for all
functions of bounded variation. Theorem 5 thus extends the result from [13] to
k-times continuously differentiable functions and shows that the bound can be
approached for a generic set of functions.

By Theorem 5, for n < p the partial sums S,(F) are bounded, hence F is a
coboundary. On the other hand, if n > p, there exists a dense G; set of F € C}
for which the partial sums S,(F) are not stochastically bounded, hence F are
not coboundaries (according to [15]).

Using Theorem 2 and Theorem 4 more directly, we can get that

— if limsup,,_, ., ¢n/q5_; = oo, there exists a dense Gs set of F € C§ which
are not coboundaries;

— if imsup,,_, o gn/gf_, < o0, the L? norms of the sums S,(F) are for every
F € C} bounded, hence F is a coboundary with a transfer function in L?
(see, e.g. [17]).

This reproves the well known result saying that if the limes inferior of ¢?||ga|| is
zero, all functions from C} are coboundaries, while in the other case there exists
a Gs set of F € C} which are not coboundaries (cf., e.g. [1]). From Theorem 3 it
follows that instead of “are not coboundaries” we can say “are ergodic”. Using
methods from the proof of Theorem 7, a function F' € C§ can be found, for which
|Sq(F)| are not bounded while limsup,, ., g»/¢%_; is positive and bounded. By
Theorem 4, F' is a coboundary with an unbounded transfer function.
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Proof of Theorem 4: Let

— § bke27rikz

keZ

be the Fourier expansion of F. From fo z) dz = 0 follows bg = 0. The function
F is real, hence by = b_j, for all k. Let

= |k|Pby, k€ Z.

We thus have y
F(.’L‘) — Z '_]ﬁe%rikx;

keZ ~{0}
as F(P) € L3, 3 o7 |bi? < 0o. Let
F (l‘) — Z bke2m’kz and F2 Z bke2mk:1:
|k|<gn-1-1 |k[>gn-1

For any integer ¢ > 2 we have
ISq(F1)| < Z |bk| i lSq(ezﬂka)l, |Sq(F2)| < Z Ibkl i |Sq(e2"ika)I.
ISIkISQn—l—l |k|2<1n_1

Let ¢,_1 < g < g,. Classically

. 1— e27rikqa
2mikay _

Sq(e ™ a) T 1= e2mika

and following [13], pp. 122-123, we have

1 < 1
e2mike — 1] = 2||kar||’
hence
; 1
(16) |S (e2mka), S =
! [kl
Therefore,
n—-1 g¢;j=1
21rika
Fl l < Z Z |k|p q )I
.7 llkl-QJ 1

- i~1
n—1 q] |b,'

1 k
= Zq,T > kol

|kl=g;-
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From the structure of the Rokhlin towers for rotations (see 3.4) and (5) it follows
that

gm—1 gm—1 gm—1 1
Z |ka||2 = Z {ka}2 ; [—ka}?
2 qm—1 1 qm—1 1
- <82 ) m=1,2
2 2 = %m 27 ) 45
lgm-1oli® = & el

({z} denotes the fractional part of x.)
Let K? = )77, 1/j% then by the Schwartz inequality,

LA
> < 2v2K¢;B; < 3K ¢;B;

ko
ki, kel =
;-1 .
where B} = ?k|=qj biI?, 5 =1,2,..., hence
n—1
(17) 1S(F1)| <3K > B;- N
i=1 -1

The functions x — S,(e2"**) are mutually orthogonal, hence for

= b g e
Fl’j(g_';) = Z |k|P .S (e i :c),
lkl=g;-1

j=1,...,n—1, we have

7

n—1 2
(18) EF1~EZ|F1]|2<9K22B2 (qp—) .
j=1 -1

Now, we shall give an estimate for Fo. From the structure of the Rokhlin
tower described in 3.4 it follows that for any interval J of length {|g,—2a||, all the
intervals 77(J),  =0,...,gn-1 — 1 are disjoint and the same result is true if we
replace o by —a. Assume that n is even (the remaining case is analogous), n > 2,
and let K, be the interval (mod 1) [—3|lgn—20]l, 3[lgn—2¢]]). For each z € Ky
let ¢(z) be the smallest integer £ > 0 such that T*(z) € K,. The function
¢(-) takes only two values. In fact £ = ¢,_; on the interval [~ 3lgn—20]| +
lgn-12l, 3||gn-2c|) and £ = g,_1 + gn—2 otherwise. Let (r;); be the increasing
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sequence of all natural numbers r > g,_; such that ra € K,. Hence, for each
7=1,2,... we have 7j41 — 7 € {¢n-1,¢n-1 + gn—2} and for all z € K,, we still
get from the Rokhlin tower and (5)

£(z)-1

1 ‘@ 1 1
X Trgar S X ({x+ja}2+{—x-ja}2)

4an Lign—2all?
< 8K2”q—n_12W < 32K%g2_,.
It follows from (16) and (19) that
rji“l M—‘IS (ezm'ka)l - Tji:—l |b | < 16K - gy - B,,/rp
e B e 2

where R’ " = erlilzr_}kl |b% | [9)1/2, j =1,2,.... From r; > j - go—1 We get

oo Ty41-1 b |

> Y

i=1 |kl=r; +1

qnl

o
p2mika |<16an— Z-—;SIGB”I\’QQH 1

where B" = (372, B”?)lﬂ. Finally

J IS (e 7r1TJ <B K
j; r? 17 g G tnd) -t qn )

where Bj,_; = (372, [0}, ?)1/2. Therefore,

+16K2B" 31,

n—l qn 1

|S4(F2)| < 2By, K -

from this and from (17) we get (12).
Similarly as in the case of F;, we can show that

2 2
EF? < C? (( 1 ) +(q2‘1> )
qn—l qn—l

where C} is a constant. From this and from (18) we get (13). ]
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Proof of Theorem:5: 1. Let ¢,¢/ > 0,1~ (p/n)+€< 0, and B Ji? < e. By
Lemma 4(iii) there exists ¢ > 1 such that ¢, < ¢- q’H*6 for every k > 1. We thus

have
q;£? < C;fﬁqk 11
hence
- 2
—q-—- <c#qk ;f‘;r <cﬂq,t +€
Ty
Let n, g be positive integers, ¢n—; < ¢ < g,. Wehaveg < ¢- qZ"_“l', therefore as
above
_?_ <c % . ql—%+e'
q'n-

The numbers B; are bounded, hence for some constant I} (not depending on ¢),
(20)

- _ - X
ne-- 1 n—2 i}

From (4) we get gk > fis 20k~1 < qr+1, k£ = 1,2,... where (f)r is the Fibonacci
sequence (fo = fi =1 and feq1 = fi + fr—1);if 1 ~p/n+ € <0, then

o0
ISy(F)| < 2Dk Y £, <

k=1
2. If 1 —p/n > 0 and € > 0, then from 2gn_; < gn41 (see (4)) it follows that
for some constant E,

1

1—-2 4¢ —+t+e 1-E4e
A o

B

Tt <E-g'™5re,

From this and from (20) it follows that there exists a constant K,
1S,(F)| < K(1+¢'™5%¢) forallgeN.

The second statement of Theorem 5 easily follows.
3. By similar arguments as above we can derive that for any € > 0 there exist

infinitely many n for which

(21) g T <
dn1

In fact, choose 0 < € < n such that 2 — 2 < e. There are infinitely many n

-2
with qn_1 < gn so that qn < 41,1/qm,]L and (21) follows.
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We have supposed n > p, hence (see Lemma 4(iii}) the limes superior of
¢n/q%_; is infinity. Let (ni)r be an increasing sequence of natural numbers
such that limg gy, /qﬁk_1 = 00. Let 0 < § < 1 and define

1-6
dn dn
Bry=|—2%—|., &= (—" ) ,
* log 74— |’ , [ ah, 1

ngp—1

where [z] denotes the integer part of z € R. Then By /gn, — 0 and cxqh _,/Bx —
0, hence (10) holds. By Theorem 2, for every F from a dense G5 subset of C}
there exists an increasing sequence of natural numbers k; such that

lim A\(|SB,, (F)| > cx;) = 1.
3 7

For¢,6 > 0,1 — f; —€> 0, g = ¢n, and ¢ = By, we obtain from this and from
(21) that
5 1—B—¢
A(18:(F) > a0 ™) > 1
for infinitely many ¢, ¢,, ¢ < g,. We can take § > 0 arbitrarily small, hence the
third statement of Theorem 5 follows. ] ‘

5. Rotations with bounded partial quotients

In the case of bounded partial quotients, the results will be much more meager
than in the preceding case. If a has bounded partial quotients, it is well-known
that F' € Ag with a square integrable derivative is a coboundary. Therefore, each
function from Lo (and hence also from C¥, 1 < k < o) is a coboundary. The
next result shows that for the functions with [ |F’|?dz = oo this need not be
the case. The proof of the theorem works for any irrational number o but only
the bounded partial quotients case is interesting now. The other case follows
from Theorem 2 and the fact that any measurable coboundary is stochastically
bounded.

THEOREM 6: Let a have bounded partial quotients a,,. Then there exists a dense
Gs subset of Ag of functions which are not coboundaries.

As we shall see in the proof, we can guarantee an existence of a dense G5 set
of functions F' € Ag such that for some ¢y — 00, nx — 0o (depending on F), the
distributions of (1/ck)Sy, (F) weakly converge to the standard normal law. At
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this moment, however, we are not able to prove a result as strong as Theorem 2.
It is even not clear whether a distribution which is not infinitely divisible can be
a weak limit point. On the other hand, the bounds for the partial sums can be

found in a more satisfactory way.

THEOREM 7: Let a be an irrational number with bounded partial quotients a,,.
Then for each F € Ay,
Sn(F) = o(logn).

Moreover, for any sequence of positive numbers (¢, ), which converges to 0, there
exists a dense Gs set of f € Ay for which

1Sn(f)lloc > cnlogn

for infinitely many n.

The first part of Theorem 7 is well-known with several proofs; for completeness,
we shall show one of them. Before proving the theorems, let us state the following

general lemma:

LEMMA 5: Forz,t€[0,1) andn=1,2,... let
1 .
F,(z,t) = q—#{i: 1 << gn, {ia} <z, {g.{ia}} < t}.

Then
lim |F,(z,t) —2-F,(1,t)| =0.

Proof of the Lemma: We have {g,{ia}} = {igra} = {i{gna}}. Without loss of
generality we can suppose that n is even (the “odd” case is similar); then {gha} =
llgnall < 1/gny1 so that {g.{ia}} = i{gna}, i = 1,...,qn. Let z,t € [0,1); if
gnllgne|l < t, then F,(1,t) = 1 and F,(z,t) = q—ln—#{i: 1 <1< gn{ia} <z},
so that the result follows from the uniform distribution mod 1 of the sequence
({ka})x. Now, assume t < gn||gnc| and recall that the sequence ({ka})y is well
distributed mod 1 (see [13]). Therefore limp—oo r(M)/M = 0, where r(M) =
sup;>y [+ M —#{i: j < i< j+ M -1, {ia} <z}

For M, n givenput ¢, = k- M +pwithl1 <p< M —1. Given any € > 0
we can choose g,, M and k such that 7(M)/M < €/2, 1/k < €/2. There exists
one number j, 0 < j < k, such that (j - M){gna} <t < ((j + )M — 1){gna}.
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Therefore,

|z #{i: 1 <1< qn, {igna} <t} —#{i: 1 <i < qn,{ia} < z, {igna} < t}]
i1
<o M- #{i - M+1<i<(E+1)M, {ia} <z} + M
=0
<k-r(M)+ M < eqn. ]

For k =1,2,... let di be a positive number, I(k) = I = [0, 6x), vi be a positive
integer and ny = Z;’;l ge;- The concrete values of di, 6k, vi and ¢; will come
out from the proof. We shall suppose that 6, <« 1/2n;. On [0,1) we define

fr(t) = —XI() di,
(22)
Fk(t)=l fe(z)dz, Fi(t) /Fk

We thus have Efr = 0, E|fi| = 2di(1 — 8). We define (for a more convenient
use of the Rokhlin towers we replace the former definition here)

Sn(f)=f+foT—1+...+foT—n+1;
thus,
Sny(fi) = qu1 (fi) + SQz2 (fr)oT % + ...+ S‘Il.,k (i) o T A,

(cf. [17, pp. 1¢1-102)). Let us denote
t

Fus@) = [ So, (o™~ ~m1)(0) do

0 7

1 u
B /0 ./ Sqe, (fe o T™%1 77 %-1)(z) dzdu,
0

. t
Fy. ;(t) =/ Squ (feoT™H2)dz, j=1,...,0, t€[0,1).

0

The functions Squ (Fp) o T79 7951, Fk,j o TY 9= " fol Fk,j(t) dt
and Fj ; have the same derivatives and zero means, hence are equal. Similarly,
Sni(Fi) = 355 Frj-
In each of the intervals [i/q;, (i +1)/qe;), 0 < @ < gg; — 1, there is just one of
the points T(0),...,T% (0) ([10]). The function Fy ; is piecewise linear. In the
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sequel we consider the limit case where §j, is so small that it can without loss of
generality be considered equal to zero (k is considered as fixed); then Fy ; has
jumps of height dj, at points 7%(0), 1 < i < qe;, the derivative F! kj = —dk*ge; In
all other points and Fy ;(0) = 0. Therefore, Fk,] (4/qe;) =0forall 0 <4 < g —1
and we denote by &; the number {g¢, {u;a}} (= g¢; {u;a}) where the integer u; is
determined by {u;a} € [i/qe,, (i +1)/qe;) and 1 < u; < gp,. Finally the function
Fk,j is on the interval (u;,u;+1] linear, decreasing with slope —dj, - qe,, and its
extremes are —di§; + di and —dg&;.

Proof of Theorem 6: Using the auxiliary functions Fj ; we shall show that Fy
can be approximated by independent random variables (which will be denoted
Fy ;). From ij(i/qe) =0, 0 <7 < qq — 1, the existence of jumps of height dj
at points T%0, 1 < 1 < qe;, and F,c j = —dkge,; at all other points, we get

1 ! 1
(23) E—di < /0 F?i(x)dx < gdﬁ.

The probability that Fy ; <t on [i/ ge;,(i+1)/ge,;) can be computed as
il
dy’

1 Itl) judl
— & — = for t < 0, i 2
2, (64 “2 g0

i
i({m—) for0<t, &<1-—
qe; dr

0 fort<0, &<

t
d
L foro<t, &>1- L
qe; d
Suppose that x € [0,1] and z = p/qe, for some p € {0,...,qs; — 1}. Then
A([0,z) N {Fr; < t}) equals

) o (& = Hxgar/ann (&), for ¢ <0,
i qe; <z 7

Y @t Expayan@)+ X xp-yaun(&), for t>0.
i/qe;<z i/qe;<e 7

Let us suppose that t is fixed, ¢t < 0, and denote

9(i) = (& 1t I) X(el/dn,1) (), 0<4< g, — 1
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We have 0 < g < 1. Considering g as a random variable on the probability
space {0,...,q,, — 1} with the measure (i) = 1/go, and using the fact that
fgdp = fol wlg > 2)dz = limp—o(1/n) > _; (g > r/n) uniformly for all g
with values in [0,1), we get

LS <—nlin;ol/nz S X/ (9()

%, 0<i<e g, =1 ¥ o<ica. ae;

= lim ( l/nz #{2 0<i<z- qej,&_gl }

n—oo
J

Let the positive integer n and € > 0 be fixed. From the definition of ; and from
Lemma 5, for ¢; sufficiently big we get

4
’— {z 0<i<z- qeg,f,_(lil }

t
—EZL#{ 0<i<gy~1, gz_Ji—k’+£}‘ < e
For € > 0 and qe, sufficiently big we thus have
(24) I)\([O, z)N {Fk’j < t} —-x- /\(Fk,j <t)| < 2.

The same result we get for t > 0.

For any n > 0 we can find finite valued functions Fk,j on [0,1) such that
| Fr; — Fk,ng < 7, and for each ¢t € R there exists an interval J; C R, t € J;
for J; # 0, A\{Fx; = t}) = A\({Frj € L)), fy Frj(x)dz = 0,5 = 1,.
From (24) and the definition of F) k,; it follows that if the numbers £; 1 — Zj are
sufficiently big,

> {IA(Fk,j =t|Fe i1 = tiose o P = 1) = AFhy = 1))
/\(pk,l =11,.. -’Fk,j—l = tj._l) > 0} <

Therefore, for any € > 0 and £;4, —¢;, 1 < j < v, —1 sufficiently big, there exists
a sequence Fy 1,..., Fy,, of independent random variables (functions on [0,1))
with

1 —
/0 Fk,h(z') dr = 0,

|Fej — Frjllz<e, j=1,...,0

(25)
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By (23) we have (1/12)d? < fol F? (z)dz < (1/3)d}. For € sufficiently small we
can suppose (1/20)d? < fol FZ(z)dz < (1/2)d3, so that for ) = Y% Fi j,

o? = [ $2(z) dz, we have

Vi Vi
Stk <ok < k.
Taking v, so big that d%l/k — 00 as k — 0o we thus get |Fk,j|/ak —0ask — o0

independently of j and by the CLT (see, e.g., [18, Theorem 13]),
| A
— > Fij—N(0,1) in distribution as k — co.
k “

Letting ¢; increase sufficiently rapidly we can make the € in (25) sufficiently small
so that

;kZFkJ = nk(Fk)

converge to N(0,1) as well.

By (22), the Ag norm of Fj is not greater than 2d,. Hence, choosing dy so
that S "p | di < oo we get Y po; Fi = F € Ao.

By Lemma 3, each of the functions Fi can be in Ag arbitrarily closely
approximated by a coboundary with a transfer function in Ag; without loss of
generality, we thus can replace the Fj s by the coboundaries, hence each of the
partial sums Zk ! F; becomes a coboundary. We can thus choose the numbers

vk so big with respect to 3"} v; that

k-1
im — F; = 0.
kll.n;o o S""(; ) ) 0
When Fy,..., Fy are given, we choose di41,dk+2,... so small that
(o 0]
lim — ||S, )|l =0.
kl»nolo Ok nk (i=2k-;-1 l) .

This way, (1/0k)Sn, (F) — N(0,1) in distribution as £ — co. As o — o0, the
partial sums S,,(F) cannot be stochastically bounded. By [15], F' thus cannot be
a coboundary.

The set of coboundaries G — G o T, G € Ay, is dense in .4g. Hence, for each
N,M € N the set Hy(M) = {F € Ag: (3n > N)(M(|S.(F)| > M) > 1/2)}
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contains a dense and open subset of Ag. The set (\3_; Naz=; Hn (M) = H thus
contains a dense G subset of Ay and for each F' € H, the sequence S, (F) is not
stochastically bounded, hence F is not a coboundary. |

Proof of Theorem 7: First, we shall prove the second part of the Theorem. Let
K be a positive integer satisfying a, < K — 1 for all partial quotients a,,. Let
m be a positive integer (the value will be specified later) and let k be fixed. We
put;=i-m,i=1,...,.

Let n = ¢; = m - j be a given even number (hence {gra} = ||gncl]), & =
{gn{uia}} where {u;a} € [i/gn, (i + 1)/gn), 0 < u; < g,. Using the same
argument as in the proof of Lemma 5, we have §; = {u;{qna}}, hence 0 < §; <
gn{agn} (< 1). Notice that by (4),

Qu+2 = Qut2qut1 + 9u < K - quir
for all integers u > 0. By (7), (5), (4) we thus get

1- Qn”‘Ina“ >1- Qn+1”‘Ina” = ‘I'n”‘In+1a“
> ¢/ (2qn+2) = 42/ (2K%g,) = 1/(2K?),

hence
~dpbi +dp € (0,1 -1/2K?)], 0<i<g,—1

so that the maximum —di&; + dy of Fi; on the interval ({u;a}, {uiy1a}) is
greater than dy./(2K?). From the definition of the function Fj ; we get that

~ di 1
F . > — ok, {u; —,
k,j (1) > 157 for z € ({u a}, {ua} + K

1=0,...,¢n — 1. A similar situation happens when n is odd.
For m big enough we have qy4m > 12K2%q, for all u = 1,2,... and

ge, + -+ @e,_, < qe;. Hence, there exist z € [0,1) such that

Fk,j(Tl_q“—"'_q‘f-lz) > j% forall j =1,2,...,u, ¥ =j-m,

hence
S (F > 1,
nk( k(z)) > Vkm-
From ¢n41 < K¢, we get

Vi Vi
ng = Zqu‘ < ZKm.j < Km(we+1),
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hence )
ElogK ne < v+ 1.

Therefore,

Sni (Fr(x)) 2 (logg ng — m).

dy
4K?2 . m

We can choose v, as big as we need, hence we can get
S, (Fi(z)) > 3cn, logs 1.

The functions Fj can be in A arbitrarily closely approximated by coboundaries
with transfer functions in Ag (see Lemma 3); we can thus replace them this way.

Having the numbers ny, ..., nk—; fixed, we can therefore choose ny so big that

x

-1

1
|50 S (F3)]/ ny logo ) < 5
1

.
It

choosing the number d; sufficiently small we get
> 1
> | sup Sn, (Fj)|/(cn, logy i) < 5
j=k+1
and

F= iFk
k=1

converging in 4,. We have
sup Sy, (F)/(cn, logy ng) > 2

for infinitely many integers k.
For any G € Ag we have

Sn(F+G —GoT)/(cn, logyne) > 1

for infinitely many integers k. The set of coboundaries G — Go T, G € Ay, is
dense in .4y (see Lemma 3). The set H, = {F: 3N > n,sup Sy (F) > cn log, N}
is dense and open in Ag and for each n = 1,2,..., H = (>, H, is a dense Gs
subset of Ag and for each F € H, S,,(F) > ¢n, log, n infinitely many times. This
proves the second part of Theorem 7.
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Let us suppose that for some ¢ > 0 and F € Ay we have

(26) lim sup sup S, (F)/logsn > c.

n—oo

For any bounded function G we then have

limsupsup Sy, (F + G — GoT)/logyn >c.

n—00

By Lemma 3 the set of coboundaries G — G o T with G € Ay is dense in Ao,
hence for every k > 0, in every open nonempty subset of A there exists a function
G—-GoT+k-F,Ge€Ap. For any N € N there exists n > N with

supSu(k-F+G—-GoT)/logon >k-c.

This property remains valid for a sufficiently small open neighborhood of
G-~ GoT+k-F, hence the set

Hyy ={F € Ap: 3n > N, sup S,(F)/logan > k - c}

is open and dense in Ag. Then H = Ny_; Nee; HN,k is a dense G5 subset of
Ag, hence nonempty. For each F € H we have

lim supsup S, (F')/ logy, n = oo.

n—oo

The discrepancy N D3 of the sequence {na} is bounded by d - log, N for some
constant d (see [13], Theorem 3.4, p.125) and by the Denjoy~Koksma’s theorem,
|Sn(F)| < b-loggn foralln = 1,2,... and b = d- V(F) where V(F) denotes the
total variation of F. Therefore, limsup, ., sup |Sn(F)}|/log,n must be finite.
This contradiction shows that (26) cannot hold for any F € Ay, hence

limsupsup |[S,(F)|/logon=0. 1

Remark: The proof of the existence of F}, such that

dkllk
Sni(F(2)) 2 T2

can be easily extended to a function F' which has a jump of height d at 1/2 and is
linear otherwise (with constant slope and F(0) = 0). F is a zero mean bounded
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variation function and, using the same approach as in the preceding proof, we
can show that there exists a discontinuum of points z for which

d- Vi
Sn(F(2)) > 1R

for all integers vk, ng = > .2, gi.m. Therefore,
sup S, (F) > ¢-logyn

for some ¢ > 0 and infinitely many n. The proof of the first part of Theorem 7
thus cannot work for general bounded variation functions, i.e. the coboundaries
G — G o T with G bounded are not dense in that space (with respect to the
variation topology). In fact, even the coboundaries with measurable transfer

functions are not dense in that space.
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